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Abstract: A decline in mitochondrial redox homeostasis has been associated with the development of
a wide range of inflammatory-related diseases. Continue discoveries demonstrate that mitochondria
are pivotal elements to trigger inflammation and stimulate innate immune signaling cascades to
intensify the inflammatory response at front of different stimuli. Here, we review the evidence that
an exacerbation in the levels of mitochondrial-derived reactive oxygen species (ROS) contribute to
mito-inflammation, a new concept that identifies the compartmentalization of the inflammatory
process, in which the mitochondrion acts as central regulator, checkpoint, and arbitrator. In particular,
we discuss how ROS contribute to specific aspects of mito-inflammation in different inflammatory-
related diseases, such as neurodegenerative disorders, cancer, pulmonary diseases, diabetes, and
cardiovascular diseases. Taken together, these observations indicate that mitochondrial ROS influence
and regulate a number of key aspects of mito-inflammation and that strategies directed to reduce or
neutralize mitochondrial ROS levels might have broad beneficial effects on inflammatory-related
diseases.

Keywords: oxidative stress; mitochondria; mito-inflammation; cancer; pulmonary diseases; gastroin-
testinal disorders; neurodegenerative disorders; diabetes

1. Introduction

Free radicals and other reactive oxygen species (ROS) are frequently associated with
being harmful. However, several physiological functions (differentiation, cellular signaling,
phosphorylation/dephosphorylation events and apoptosis) are dependent on the pres-
ence of reactive species inside the cells [1]. To regulate these cellular functions, the ROS
production must be kept low. When it increases, ROS become dangerous, determining un-
desirable effects on cellular structures, including intracellular organelles, and participating
in the onset and/or progression of several human disorders, such as neurodegenerative
disorders, cancer, pulmonary, and cardiovascular diseases [2–5]. ROS can be produced at
cytosolic levels by the NADPH oxidase (NOX) and the nitric oxide (NO) synthase enzyme.
The well-characterized source of cytosolic ROS is NOX2, which produces anion superoxide
(O2·−) through NAPDH electron exchange [6]. Alternatively, significant amounts of ROS
are generated in the peroxisomes compartment by oxidases and NO synthases that produce
hydrogen peroxide (H2O2) and NO, respectively [7]. The endoplasmic reticulum (ER) rep-
resents a place where high amounts of ROS are produced. In this compartment, ROS result
in being the byproduct of oxidases and oxygenase involved during the protein folding pro-
cess, such as ER oxidoreductin 1 [8]. Moreover, ER present iron deposits that contribute to
form the reactive species hydroxyl radical (·OH), but undoubtedly, mitochondria represent
the primary source of ROS (mitochondrial ROS, mtROS) for the cell [9].
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Mitochondria are essential semi-autonomous cellular organelles with a double mem-
brane composed by an inner (IMM) and an outer membrane (OMM). OMM separates
the mitochondria from cytoplasm and it may be freely traversed by many proteins (5000
daltons or less), ions, such as Calcium (Ca2+), and metabolites, while the larger molecules
are imported by specific translocase [10–12]. IMM is highly specialized and permits
the passage of small molecules, including oxygen, carbon dioxide, and water. The passage
throughout IMM of any other macromolecules is permitted by the action of dedicated
translocase, like TIM (translocase of the inner membrane). Within the organelle, OMM
and IMM allow the formation of two different compartments: the intermembrane space
(IMS) and the matrix [13]. IMS plays a crucial role in regulating different cellular activities,
such as mitochondrial respiration, proteins transport, lipid homeostasis and metal ion
exchange; while the matrix contains the mitochondrial DNA (mtDNA), mitochondrial
ribosomes and multiple diverse metabolic pathways [tricarboxylic acid (TCA) cycle, β-
oxidation, and heme synthesis], that modulate the assembly and genes expression, as well
as, Ca2+ uptake which is critically important to cellular function [14–16] mtDNA is a closed
circle double-stranded DNA, without histones and of effective repair mechanism. mtDNA
encodes for 37 genes, including 13 components of the mitochondrial electron transport
chain (mETC) [17]. Mitochondrial matrix is also the site of a series of enzyme that convert
pyruvate and fatty acid in acetyl-CoA. Once produced, acetyl-CoA enters in TCA cycle
which produces NADH and FADH2 that are used by mETC [18].

mETC is composed by four complexes (I-IV) that are embedded in the IMM and
are responsible to create the electrochemical gradient required to generate ATP. Notably,
complex-I (NADH-CoQ reductase) and complex III (cytochrome c reductase) represent
the primary sites of production of mitochondrial O2·− (Figure 1). This byproduct of the mi-
tochondrial respiration is also considered the most quantitatively important mtROS source
in higher organisms [2]. However, mitochondria are not only an ROS-producing compart-
ment but, in turn, are their targets. In particular, mitochondrial phospholipids and DNA are
susceptible to mtROS-induced oxidative damage (Figure 2). Mitochondrial phospholipids
loss their permeability and fluidity compromising the functioning of all factor associated to
the membrane, in particular mETC members and ion channels. mtDNA loses its integrity,
acquiring mutations and reducing in the number of mtDNA copies. In turn, mtDNA muta-
tions can determine further alteration in mitochondrial functioning and signaling that may
be determinant for various human diseases [19]. To avoid accumulating oxidative damages,
mitochondria have evolved different mechanisms to reduce the mtROS-induced oxidative
damage or eliminate injured mitochondria. The mitochondrial antioxidant systems and
the mitochondrial stress responses (including mitophagy, mitochondrial unfolded protein
response (mtUPR), and apoptosis) represent some classical examples [2]. In addition, it is
widely accepted that alterations in mitochondrial functions (like in Ca2+ dynamics and/or
in lipid transfer from ER to mitochondria) modulate the mtROS production [2]. Thus,
increased levels of mitochondrial Ca2+ activate ROS-generating enzyme and the formation
of radicals.
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Figure 1. Mitochondrial sites of ROS production. Mitochondrial complex I and III of respiratory chain are the principal sites of O2•− 
production within a cell, which can be converted to H2O2 by superoxide dismutase (SOD1 and SOD2) enzymes. H2O2 in turn is 
rapid neutralized to H2O and oxygen by glutathione peroxidase (GPX). However, other mitochondrial proteins, localized from 
OMM to matrix, may also contribute to mtROS production, including monoamine oxidase A and B (MAO A/B), cytochrome (Cyt.) 
b5 reductase, mitochondrial glycerol-phosphate dehydrogenase (mGPDH), p66Shc, Fhit with ferredoxin reductase (FDxR), adreno-
doxin reductase (ADxR)-adrenodoxin (ADX)-cytochrome P450scc (CYP450) system, α-ketoglutharate dehydrogenases (KGDHC), 
acyl-CoA dehydrogenases (ACAD) and aconitase. This figure has been created with “BioRender.com.”. 

Figure 1. Mitochondrial sites of ROS production. Mitochondrial complex I and III of respiratory chain are the principal sites
of O2

•− production within a cell, which can be converted to H2O2 by superoxide dismutase (SOD1 and SOD2) enzymes.
H2O2 in turn is rapid neutralized to H2O and oxygen by glutathione peroxidase (GPX). However, other mitochondrial
proteins, localized from OMM to matrix, may also contribute to mtROS production, including monoamine oxidase A and
B (MAO A/B), cytochrome (Cyt.) b5 reductase, mitochondrial glycerol-phosphate dehydrogenase (mGPDH), p66Shc,
Fhit with ferredoxin reductase (FDxR), adrenodoxin reductase (ADxR)-adrenodoxin (ADX)-cytochrome P450scc (CYP450)
system, α-ketoglutharate dehydrogenases (KGDHC), acyl-CoA dehydrogenases (ACAD) and aconitase. This figure has
been created with “BioRender.com”.

Clearly, mitochondria and mtROS production are primary signal hub for the cells.
It is not surprising that diverse studies highlight their involvement in pathogenesis of
various diseases, including neurodegenerative disorders, cancer, viral and bacterial in-
fection, cardiovascular diseases, metabolic syndromes, and autoimmune disorders [20].
In particular, it has been proposed that mitochondrial dysfunction and excessive mtROS
levels sustain inflammation in these pathological conditions. In these contexts, mtROS-
induced inflammation acts as a feedback system creating a stressful environment, where
the exacerbation of inflammation provokes tissue damage and becomes a chronic event [20].
Considering the importance of oxidative stress in inflammation, it is easy to speculate that
therapeutic manipulations aimed to prevent oxidative damage, targeting the mitochon-
drial (dys)function and generating an antioxidant power, may represent an opportunity to
disrupt the reciprocal relation between mtROS and “mito-inflammation”. A new concept
that identifies the compartmentalization of the inflammatory process in which the mito-
chondrion acts as central regulator, checkpoint, and arbitrator.
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Figure 2. Mitochondrial ROS-induced inflammatory response. Representation of multifaceted aspects of mitochondrial 
ROS in inflammation. Increased mtROS cause oxidative damage to mitochondrial membrane, with events of lipidic pe-
roxidation and changes in membrane permeability, molecules, proteins, and mtDNA, which contribute to mitochondrial 
dysfunction and exacerbation of mtROS production. The dissemination of mtROS actives the redox-sensitive transcription 
factor NF-kB, inducing the expression of inflammasome genes, such as Nlrp3, Nlrc4, and Il1b genes. In turn, the mtROS 
and mtDNA promote the cytokines release mediating the inflammasome NLRP3 and NLRC4 complex activation, through 
the recruitment of pro-caspase−1 and the processing of pro-IL−1 and pro-IL−18. Finally, mtROS are reversed to extracel-
lular milieu to sustain and exacerbate the inflammatory responses, affecting proximal cells and conditioning the inflam-
matory microenvironment. Abbreviations: Reactive oxygen species, ROS; Interleukin−18, IL−18; Interleukin−1, IL−1; NLR 
Family CARD Domain Containing 4, NLRC4; ASC; NLR Family Pyrin Domain Containing 3, NLRP3; Mitochondrial an-
tiviral-signaling protein, MAVS; mitochondrial deoxyribonucleic acid, mtDNA; NLR Family member X1 precursor, 
NLRX1; Calcium, Ca2+; Nuclear factor kappa-light-chain-enhancer of activated B cells, NF-kB; Mitochondrial membrane 
potential, ΔΨ. This figure has been created with “BioRender.com.”. 
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ous diseases, including neurodegenerative disorders, cancer, viral and bacterial infection, 
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ular, it has been proposed that mitochondrial dysfunction and excessive mtROS levels 
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erbation of inflammation provokes tissue damage and becomes a chronic event [20]. Con-
sidering the importance of oxidative stress in inflammation, it is easy to speculate that 
therapeutic manipulations aimed to prevent oxidative damage, targeting the mitochon-
drial (dys)function and generating an antioxidant power, may represent an opportunity 
to disrupt the reciprocal relation between mtROS and “mito-inflammation”. A new con-
cept that identifies the compartmentalization of the inflammatory process in which the 
mitochondrion acts as central regulator, checkpoint, and arbitrator. 

The present review will summarize the current literature surrounding the role of mi-
tochondria in ROS production and signaling in both physiology and pathophysiology. In 

Figure 2. Mitochondrial ROS-induced inflammatory response. Representation of multifaceted aspects of mitochondrial ROS
in inflammation. Increased mtROS cause oxidative damage to mitochondrial membrane, with events of lipidic peroxidation
and changes in membrane permeability, molecules, proteins, and mtDNA, which contribute to mitochondrial dysfunction
and exacerbation of mtROS production. The dissemination of mtROS actives the redox-sensitive transcription factor
NF-kB, inducing the expression of inflammasome genes, such as Nlrp3, Nlrc4, and Il1b genes. In turn, the mtROS and
mtDNA promote the cytokines release mediating the inflammasome NLRP3 and NLRC4 complex activation, through
the recruitment of pro-caspase−1 and the processing of pro-IL−1 and pro-IL−18. Finally, mtROS are reversed to extracellular
milieu to sustain and exacerbate the inflammatory responses, affecting proximal cells and conditioning the inflammatory
microenvironment. Abbreviations: Reactive oxygen species, ROS; Interleukin−18, IL−18; Interleukin−1, IL−1; NLR
Family CARD Domain Containing 4, NLRC4; ASC; NLR Family Pyrin Domain Containing 3, NLRP3; Mitochondrial
antiviral-signaling protein, MAVS; mitochondrial deoxyribonucleic acid, mtDNA; NLR Family member X1 precursor,
NLRX1; Calcium, Ca2+; Nuclear factor kappa-light-chain-enhancer of activated B cells, NF-kB; Mitochondrial membrane
potential, ∆Ψ. This figure has been created with “BioRender.com”.

The present review will summarize the current literature surrounding the role of
mitochondria in ROS production and signaling in both physiology and pathophysiology.
In particular, it will be discussed how mitochondrial oxidative stress regulates diverse
human diseases throughout the modulation of “mito-inflammation”, with a focus on
the therapeutic mitochondria-targeted strategies for avoid mtROS production and reduce
the oxidative stress, in order to counteract, or better, prevent the inflammatory state at
the base of pathological conditions.

2. Mitochondria: A ROS Production Machinery

Mitochondria are widely recognized as a source of ROS production within most
mammalian cells in both physiological and pathological conditions. The generation of
mtROS from mitochondria was first discovered during the early 1970s [21,22]. According
to estimates, 1–2% of total cellular oxygen consumption is going to ROS production [23].

mtROS are produced as byproduct of bioenergetic metabolism during the process of
oxidative phosphorylation (OXPHOS) and formed by one-electron transfers, generating

BioRender.com
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O2
•− that can be converted to H2O2 by superoxide dismutase (SOD) enzymes [24]. Multiple

sites of mtROS production have long been identified in the organelle and mtROS can
take place both in the mitochondrial matrix by the core metabolic machinery present
in the IMM and in the intermembrane space [25]. Generation of mtROS mainly takes
place at the ETC, located on the IMM, during the process of OXPHOS [26], which includes
the major sites of the respiratory chain Complex I (NADH dehydrogenase (ubiquinone), 45
protein subunits), Complex III (ubiquinol-cytochrome c reductase, 10 proteins subunits),
and also the dihydrolipoamide dehydrogenase enzyme [27,28]. Complex I generates O2

•−

by reducing flavin mononucleotide (FMN) site on complex I and reversing electron transfer
from the coenzyme Q (CoQ) pool back to complex I [2]. Basically, complex II (succinate
dehydrogenase) was not considered a source of ROS per se, instead its contribution to ROS
generation is linked to reverse electron transfer, in which electrons are transferred from
succinate to ubiquinone through complex II and then back to complex I [29]. Complex II
consists of four subunits. Two subunits are located on the matrix side of the IMM: SDHA
(succinate dehydrogenase), the flavoprotein subunit covalently bound a FAD cofactor,
which removes electrons from succinate; SDHB, the iron-sulfur protein subunit, contains
the binding site of the substrate succinate, three clusters (2Fe-2S), (4Fe-4S), and (3Fe-4S)
that mediate electron transfer to the ubiquinone molecule; and SDHC and SDHD the two
anchor subunits to the IMM, the assembly factors participate in the biogenesis of complex
II [30–32]. Brand’s group demonstrated that complex II can produce superoxide through
flavin adenine nucleotide (FAD) [33]. Indeed, it has been suggested that other less well-
described sites may also participates in ROS production including, the electron transferring
flavoprotein/ETF:Q oxidoreductase (ETF/ETF:QOR) system of fatty acid β-oxidation [34],
dihydroorotate dehydrogenase [35], and proline dehydrogenase [36]. These different
mtROS’s sites have distinct signaling roles and subsequently the primary production sites
change under different physiological conditions [37]. Indeed, the production of radicals
from the mitochondrial respiratory chain is conditioned by multiple factors, including
mitochondrial membrane potential, metabolic state of mitochondria and oxygen levels [38].

Other mitochondrial proteins may participate to increment the mtROS production.
In particular, the mitochondrial enzyme dehydrogenase of α phosphate dehydrogenase
(glycerol α phosphate dehydrogenase, mGPDH), located at the outer surface of the IMM,
is a flavoprotein containing FAD and serves as an electron shuttle linking the cytosolic
NADH/ NAD recycling to the mETC implicated in lipid metabolism capable of produc-
ing cytosolic NAD+ from the NADH formed in glycolysis [39]. However, it is unequally
expressed in numerous mouse tissues mediating the generation of H2O2 [40]. Therefore,
other potential sources of mtROS are still more poorly explored, such as acyl-CoA de-
hydrogenases (ACAD), which are flavoproteins and have increasingly been recognized
as oxidant sources in mitochondria, involved in lipid catabolism [41]. Both of these pro-
teins are implicated in mtROS production in tissues during the oxidation lipid-derived
substrates [42]. The mitochondrial enzyme adrenodoxin reductase (ADxR)-adrenodoxin
(ADX)-cytochrome P450scc (CYP450) system (cholesterol side chain cleavage) is also in-
volved in superoxide generation and is coupled with NADPH in the mitochondrial ma-
trix [43]. The onco-suppressor Fhit protein, imported into mitochondria, interacts with
ferredoxin reductase (FDxR), which transfers electrons from NADPH to CYP450 via ferre-
doxin (FDX), increasing the intracellular superoxide production [44,45]. The redox enzyme,
p66shc, regulates the oxidative stress acting a different level. This adaptor protein may
induce ROS generation by: (i) Translocating into mitochondria, after PKC-dependent
phosphorylation, to transfer electrons from reduced cytochrome C to oxygen [46,47], (ii)
activating the Rac-1-dependent plasma membrane NADPH oxidase [48], and (iii) down-
regulating the expression of antioxidant enzymes, such as glutathione peroxidase-1 and
manganese superoxide dismutase (Mn-SOD) [49,50]. The enzymes monoamine oxidase
(MAO-A and MAO-B) are located in the OMM and expressed in various mammalian
tissues catalyze the oxidation of biogenic amines accompanied by the release of H2O2 [51].
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Mitochondrial aconitase is an enzyme positioned in the matrix, the enzyme contains an
iron-sulfur cluster that can be oxidized by O2

•− or H2O2 generating •OH [52].
Uncoupling proteins (UCPs) are IMM proteins that belong to a family of mitochondrial

transporters regulating the proton transport across the IMM. In particular, UCPs determine
an inducible proton leak by causing mild-uncoupling events. During mild-uncoupling
process, the mitochondrial membrane potential (∆Ψ) and the reduction events in the ETC
diminished, thereby resulting in decreases in ROS production from the ETC [53].

UCPs exists in three forms: UCP 1-3. UCP1 is primary found in mitochondria from
brown adipose tissue, where it regulates the thermogenesis in response to cold exposure
and modulates the ROS production. Consistently, UCP1 knockdown mice are characterized
by low levels of ∆Ψ, reduced O2 consumption rate, and increased ROS production [54].
In addition, it has been recently demonstrated that UCP1 regulates the ROS production also
in kidney. Deletion of UCP1 results in increased oxidative stress in kidney and exacerbates
an ischemic condition or a nephrotoxic drug-induced acute kidney injury. Contrarily, viral-
based expression of UCP1 suppresses the mtROS production and alleviates the induced
kidney injury [55]. UCP2 and UCP3 mRNA expression are ubiquitous and their proteins
are present in different tissues, in particular skeletal muscle, central nervous system, pan-
creas, and spleen. UCP2 and UCP3 protect mitochondrial proteins from endogenous
ROS (such as O2

•−), and UCP3 and UCP2 knockout models present increased ROS levels.
In addition, it has been demonstrated that ROS, 4-hydroxy-2-nonenal (4-HNE), and lipid
peroxidation determine activation of UCPs [56,57]. These findings suggest that UCPs
exist in a feed-back mechanism, where increased ROS production activates a protective
mechanism (uncoupling events) necessary to reduce the ROS formation and the consequent
ROS damage. UCP2 has also an important role during insulin secretion in pancreatic β

cells. In fact, UCP2 contributes to regulate the intracellular ROS levels of β cells, thereby
controlling the excessive glucose-stimulated insulin secretion (GSIS) [58]. UCP2 represent
an essential metabolite transporter that regulates the mitochondrial export into the cytosol
of metabolites: malate, oxaloacetate and aspartate. Because of this transport, UCP2 pre-
vents the oxidation of glucose and sustains the glutaminolysis [59]. Another protein that
preserves an efficient electron transport and control the ROS production is hexokinase (HK)
2. HK2 is recruited to the OMM where it binds itself to the ADP/ATP exchange complex
formed by VDAC and ANT. The role of HK2 is to provide continuously ADP in order to
generate the ADP/ATP recycling mechanism essential to preserve the optimal respiration
rate, thereby preventing the dangerous electron leak producing ROS [60]. In line with this
evidence, HK2 knockdown and the dissociation of HK2 from mitochondria increase ROS
production and activate the mitochondrial permeability transition (MPT) both in vivo and
in vitro [61]. Accordingly, HK2 overexpression decreases the mtROS levels [61].

Sirtuins (SIRTs) are nicotinamide adenine dinucleotide (NAD)-dependent histone
deacetylases that play pivotal role in diverse cellular functions, including protein acetyla-
tion and deacetylation, metabolism, mitochondrial functioning, and cell survival. In ad-
dition, all seven SIRTs isoforms have been associated to process related to antioxidant
and redox signaling. In particular, the functions of SIRT1 (the most well-studied member)
have been associated to mediate protection from ROS. At demonstration, small molecule
activators of SIRT1, such as SRT1720, determine activation of SOD2 levels, accompanied by
reduction in the formation of 4-HNE and in protein carbonylation levels [62]. SIRT1 can be
also directly activated by oxidative stress and is required for DNA repairing mechanisms
following H2O2-induced damage [63]. Similarly, the antioxidant compound resveratrol
activates SIRT1 to protect cells from H2O2-induced cell death [64]. Another important SIRTs
modulating ROS levels is SIRT3. Downregulation of SIRT3 is associated with increases
of ROS production and activation of the protumorigenic transcription factor HIF-1α [65].
Furthermore, SIRT3 may activate the human 8-oxoguanine-DNA glycosylase 1 (OGG1),
which is an enzyme crucial for the repairing of the mtDNA [66].

However, the levels of mtROS are conditioned by the specific action of mitochondrial
antioxidant systems, recruited to detox the radicals produced. SODs are the antioxidant
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enzymes that convert O2
•− to H2O2 (Figure 1). Two isoforms control the level of O2

•−:
SOD1/copper-zinc superoxide dismutase (Cu, Zn-SOD) and SOD2/ Mn-SOD isoform.
SOD1 is widely distributed throughout the cell, cytoplasm, nucleus, and intermembrane
space of mitochondria (IMS), whereas SOD2 is expressed only in the mitochondrial ma-
trix [67] (Figure 1). The rapid conversion into H2O2 is counteract by catalase and glu-
tathione peroxidase (GPX), which neutralize H2O2 in H2O and oxygen [68,69] (Figure
1). Catalase is mainly located to cytosol, indicating that the scavenge capability in mito-
chondria it is leaved to GPX [70]. So far, in mammals, there have been eight GPX isoforms
identified, where GPX1-4 and GPX6 are selenoproteins with a selenocysteine as catalytic
moiety and only GPX1 and GPX4 are expressed to mitochondria. The GPX-dependent
scavenge capability is associated to use glutathione (GSH) as cofactor and electron source
to neutralize H2O2.

3. Mitochondrial Oxidative Stress and Mito-Inflammation in Inflammatory-Related
Diseases

Mitochondrion is historically defined as energy powerhouse and arbiter of cellular
destiny. Now, evidence assign to this organelle the supplementary role of “hub” in in-
flammation, becoming a druggable target to modulate the amplitude of inflammatory
response and, eventually, its exacerbation. A new concept is arising around mitochondria
and inflammation: The mito-inflammation, a mitochondria-related compartmentalized in-
flammatory response, where the organelle acts both downstream in intracellular signaling
pathways triggered by exogenous pathogen-associated molecular patterns (PAMPs), and
as font of mitochondrial damage-associated molecular patterns (mtDAMPs). During mito-
inflammation, mtROS, mtDNA, ATP, cardiolipin, and mitochondrial Ca2+ are reversed
in the cytosol or in the extracellular milieu to induce the expression and release of nu-
merous pro-inflammatory mediators [71–73]. Among mtDAMPs, mtROS may directly act
into the organelle, promoting oxidative damage to intra-organelle molecules and mtDNA,
or freely move through the OMM (Figure 2). Once in the cytosol, mtROS may trigger
the activation of pro-inflammatory signaling pathways, in particular, induce the activation
of redox-sensitive transcription factors, such as nuclear factor kappa B (NF-kB), HIF and
AP-1, which contribute to production of pro-inflammatory cytokines, including IL−1 and
IL−8 (Figure 2) [74–78].

Oxidative damage to mtDNA and mitochondrial proteins alter the OXPHOS activ-
ity with several implications on ∆Ψ and structure, producing in turn additional mtROS.
Oxidized mtDNA is released from matrix mediating impaired mitophagy, Ca2+- and
oxidative-dependent mitochondrial PTP opening, and OMM permeabilization [72,79].
In the cytosol, or in the extracellular milieu, mtROS and oxidized mtDNA may also be
sensed by germline pattern recognition receptors (PPRs), localized at the plasma mem-
brane and cytosol in immune and tissue resident cells [80]. These receptors are divided
in four main sub-families on the basis of their location, function, and specific ligand: Mem-
brane bound Toll-like receptors (TLRs), C-type lectin receptors (CLRs), the cytosolic NOD
(nucleotide-binding oligomerization domain)-like receptors (NLRs), and RIG (retinoic acid-
inducible gene)-l-like receptors (RLRs) [81].

In macrophages, binding of TLR-1, TLR-2, and TLR-4 induce the tumor necrosis factor
receptor-associated factor 6 (TRAF-6) to move to mitochondria to induce antibacterial activ-
ity through mtROS [82]. It engages and ubiquitinates the ECSIT (evolutionarily conserved
signaling intermediate in Toll pathways), which assembles the membrane arm complex I,
promoting the translocation of mitochondria to the phagosomal membrane and the ECSIT-
dependent macrophage oxidative burst useful to kill the engulfed microbes [82,83].

While TLR receptor have a plasma membrane localization, RLRs have a cytosol
distribution. Among them, RIG-l-like (RIG-I) and melanoma differentiation associated
gene 5 (MDA5) receptors can respectively sense short and long viral dsRNA. Once these
proteins have been bound by cytosolic viral RNA, they interact with the mitochondrial
antiviral signaling protein (MAVS) at the OMM. This coupling activates and promotes
MAVS oligomerization leading to the activation of transcription factors IRF3, IRF7, and NF-
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kB, which induce the synthesis of interferon type-I and of antiviral molecules (Figure 2) [84].
MAVS interacts with NLR family member X1 (NLRX1), a regulator of mitochondrial
antiviral immunity that localizes to OMM to block the MAVS-mediated interferon promoter
and antiviral activity [85]. The strong connection between mtROS and MAVS has been
enforced by evidences that linked an increase in mtROS production to an amplification
of RLR-signaling and a mtROS-dependent modulation of the biophysical properties of
the OMM required for MAVS oligomerization [86–88].

Another class of cytosolic PPRs activated by PAMPs and/or mtDAMPs are NLR
proteins, where most of them after activation, form a multi-protein complex termed “in-
flammasome”, which leads to caspase-1 maturation and secretion of IL−1 and IL−18 [89].
A defined role for mitochondria in NLR activation and function has been confirmed for
NLRX1, NLR family pyrin domain containing 3 (NLRP3), and NLR family CARD domain
containing 4 (NLRC4/IPAF) [90]. The activation of the well-characterized inflammasome
NLRP3 is split in two phases: Priming and activation. In the priming step, the expression
and post-translational modifications of different inflammasome components (including
NLRP3, NLRC4, pro-IL−1, pro-IL−18) are induced in response to pro-inflammatory stim-
uli and consequent NF-kB activation (Figure 2) [91]. The activation is controlled by a wide
range of signals and requires a physical interaction with mitochondria for the assembly
of NLRP3-inflammasome and the subsequent auto-cleavage of pro caspase-1, responsible
for the production of mature cytokines IL−1 and IL−18 (Figure 2) [92]. Mitochondrial
localization, due by MAVS and mitochondrial-anchored protein ligase (MAPL) binding,
has a central role in the modulation of inflammasome response not only because of its
role of scaffold, but also because this interaction favors the activation of NLRP3 through
the release of mtROS and mtDAMPS (e.g., mtDNA) [93,94].

Moreover, it has been shown how the priming and the activation phases of NLRP3
inflammasome is linked to the new synthesis of mtDNA for inflammasome activation, high-
lighting the role of mitochondria in both the steps required [95]. In addition, NLRC4/IPAF
inflammasome may be activated by oxidized mtDNA. This inflammasome is known to
be activated by many pathogens, such as Pseudomonas aeruginosa, and their products
by activation of TLRs on the plasma membrane via the microbial type III secretion sys-
tem (T3SS) [96,97]. Nevertheless, few years ago an alternative mechanism of activation
promoted by direct binding of oxidized mtDNA has been identified in bone-marrow
macrophages [98].

The contribution of mtROS in inflammation is strictly influenced by mitochondrial
status. mtROS levels increase especially during mitochondria malfunctioning, that cover
a wide range of abnormalities from accumulation of unfolded proteins or excessive Ca2+,
to OXPHOS impairment. Besides their role of signaling molecules at low concentrations
and of inflammatory response activators at moderate concentrations, when mtROS concen-
tration becomes too high, they are also responsible of cellular injuries. In order to avoid cell
damage, the production of mtROS is fine-tuned by both mitochondrial antioxidant systems
and mitochondrial stress responses that trigger the restore of mitochondrial homeosta-
sis. Functional fusion complementation, mitophagy, and mitochondrial unfolded protein
response (UPRmt) intervene to recover and preserve the mitochondrial homeostasis to
regulate metabolism and innate immune response and cell viability. Mitochondrial fusion
compensation optimizes the functional efficiency of organelle under stressful conditions, al-
lowing the exchange of materials among partially damaged mitochondria [99]. Mitophagy
neutralizes excess of mtROS, oxidized mtDNA, and other mtDAMPs relevant for inflam-
mation, removing dysfunctional mitochondria mediating lysosomal degradation [100].
Mitochondrial-targeted kinase PINK1 and E3 ubiquitin ligase Parkin are the principal
actors in the mitophagic response [101]. Parkin is recruited to OMM by altered mitochon-
drial import of PINK1 in depolarized mitochondria, where catalyzes the ubiquitination
of OMM proteins to sequester the organelle in autophagosome, while PINK1 contributes
to strengthen the mitophagy, phosphorylating both parkin and ubiquitin; and recruiting
the mitophagic receptors NDP-52 and optineurin to mitochondria [102,103]. Finally, the mi-
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tochondrial unfolded protein response (UPRmt) is a transcriptional response activated by
dysfunctional mitochondria, where upon mitochondrial stress, Activated Transcription
Factor 5 (ATF5) fails to be imported into mitochondria and moves to nucleus to induce
the transcription of mitochondrial chaperones and proteases, ROS detoxification protein,
and innate immune genes [104–106]. UPRmt induces also the synthesis and secretion of
nuclear-encoding and mitochondrial derived mediators, called mitochondrial cytokines or
mitokines, able to reshape cell metabolism and viability [98,107,108]. Although, the sig-
naling role of these mitokines has not yet been fully established, they may be considered
pivotal actors for the modulation of systemic response, such as metabolism and or in-
flammation, during a disease progression. Furthermore, the excess of mitochondrial Ca2+

levels is critical for oxidative stress and inflammation. Perturbation of mitochondrial
Ca2+ signaling boosts the mtROS production with consequent repercussions on the mi-
tochondrial stress responses, inflammasomes activations and release of proinflammatory
mediators [109]. The mtROS production correlates with the mitochondrial metabolic rate,
which in turn, determines the effects of mitochondrial Ca2+ signaling on mtROS levels [110].
Mitochondrial Ca2+ signaling may promote mtROS production: (i) directly, by stimulat-
ing mitochondrial resident ROS-generating enzymes, such as -ketoglutarate and glycerol
3-phosphate dehydrogenase [111,112]; (ii) indirectly, by the Ca2+-dependent activation of
nitric oxide synthase, which mediating nitric oxide blocks the mitochondrial complex IV;
and (iii) or via reverse electron transport induced by Ca2+-dependent mitochondrial mem-
brane depolarization [113,114]. In turn, mtROS contribute to perturb the Ca2+ signaling
affecting the activity of receptors, Ca2+-effectors, and molecules involved in Ca2+ signaling
pathways, reshaping intracellular, and compartmentalized Ca2+ signals [110]. An example
is given by mitochondrial Ca2+ uniporter (MCU), which post-translational modification
on cysteine at position 97, mediated by oxidative stress, induces clustering and persistent
channel activation, leading to increased mitochondrial Ca2+-uptake [115].

The loss of mitochondrial homeostasis and the excessive accumulation of mtROS
have been demonstrated to be linked to development of various pathologies, such can-
cer, diabetes, neurodegeneration, and cardiovascular diseases. This review is aimed at
discussing some pathological conditions associated with an inflammatory state, which is
strictly conditioned by the abnormal presence of these two factors, where mitochondrial
dysfunction and mtROS become the principal actors in these pathological sceneries.

3.1. Cancer

The mtROS are involved in the different phases of tumorigenesis. In the initiation
and promotion stage, mtROS induce mtDNA oxidation and damage, promoting mutations
and structural alterations to mtDNA with consequent effects on gene expression and mito-
chondrial signaling. All these conditions, in turn, favor the cell proliferation and promote
the apoptotic evasion in the progression stage. Wang et al., examining human lung, bladder
and head and neck cancers, showed that the mutation in mtDNA were about 20-200 times
more frequent respect to nuclear DNA [116]. The mtROS are responsible not only for
the genetic instability but also for influencing the inflammatory microenvironments of
tumors and to induce the activation of oxidative-sensitive transcription factors, such as HIF,
which modulate the energy status in cancer cells [117,118]. Cancer cells adopt a different
metabolism to produce energy, where the use of aerobic glycolysis results is preferred with
respect to mitochondrial oxidative phosphorylation. This metabolic switch is known as
the “Warburg effect” and is characterized by the fact that cancer cells use glucose and
excrete lactate. This phenomenon was unveiled in the 1920s by Warburg and Cori. Subse-
quently, they also observed that mitochondria of cancer cells were dysfunctional. Several
other investigations confirmed the Warburg effect throughout the years. Fantin et al. in 2006
demonstrated that it was possible to prevent the tumor progression by blocking the con-
version of pyruvate into lactate by inhibiting lactate dehydrogenase [119]. In the same year,
another work demonstrated that by activating the mitochondrial metabolism, in particular
OXPHOS, the cancer growth arrested [120]. Therefore, it is well assumed that cancer cells
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avidly consume glucose for their maintenance. Consistent with this, the Warburg effect
has been observed in many cancer types. In colorectal carcinoma, a strong correlation was
observed between the malignant potential of the tumor and the levels of the expression of
the glucose transporter (GLUT) proteins, responsible for the cellular glucose uptake [121].
Increased levels of GLUT have been also evidenced in human breast cancer [122]. An-
other example may be found in lung cancer, where a great dependency on glycolysis and
a parallel impairment in mitochondrial respiration was found [123]. Finally, it has been
demonstrated that aerobic glycolysis may be not only a consequence of carcinogenesis, but
also favors the transformation process [124].

However, last decades have been characterized by very great improvements in the field
of the scientific research. These advances have permitted a deeper and more detailed
analysis of the continuous metabolic changes that happen in cancer cells, and in particular,
it has been demonstrated that the Warburg effect is not consistent in all cancer types.
In fact, in a range of tumor types, the mitochondria remain functional [125,126]. This
happens in ovarian cancer, where it has not only been found to have a high dependence
on mitochondria of cancer cells, but also that anti proliferative agents reduce the tumor
growth by suppressing the mitochondrial metabolism [127]. By analyzing the metabolism
in non-small cell lung cancer (NSCLC) patients in vivo, a great metabolic heterogeneity has
been observed between different tumor regions: Some regions were characterized by high
glycolytic rates, while others presented elevated levels of complete glucose oxidation [128].
High mitochondrial functioning has been found in liver cancers and in metastatic brain
tumors [125,126,129]. Overall, these findings suggest that during the tumorigenesis, cancer
cells may undergo a metabolic reprogramming, in which the Warburg effect represents
a key event. Although, changes in glucose metabolism during tumor initiation and growth
affect cellular processes that may generate ROS [130].

Indeed, oncogenes and tumor suppressor genes in cancer cells promote mtROS pro-
duction, including oncogenic H-Ras that induces mtROS formation for mitogenic signal-
ing [131,132]. This increment in ROS levels is due to mitochondrial hyperactivity mediated
by major changes in Ψ and Ca2+-affinity/accumulation. The oncogenic mitochondrial
hyperactivity is not sustainable for all the stages of tumor process. mtROS accumulation
may damage the organelle, exacerbating the mitochondrial oncogenic stress. Under these
conditions, the cancer cells active the mitochondrial stress responses, such as mitophagy
and UPRmt, to restore the mitochondrial integrity potentiating the cellular survivor and
resistance to stress [133]. mtROS produced by cancer cells are signaling molecules released
in tumor microenvironment to condition cancer-associated cells and tumor-infiltrating
leukocytes [117]. mtROS affect the function of cancer-associated fibroblasts, inducing
differentiation and metabolic reprogramming to sustain and augment the tumorigene-
sis [134–136]. Although T-cells use complex I and III of ETC to generate a low level
of mtROS to induce T-cell activation, the excessive accumulation of ROS in the tumor
microenvironment has an immunosuppressive effect on the tumor-infiltrating immune
cells [134]. High levels of ROS block the proliferation of infiltrating T-cells and inhibit their
anti-tumor function [137]. These effects are counteracted with mtROS scavengers, such as
MitoQ and MitoTEMPO, which restore the T-cell activation [138]. The controversial role
of ROS in tumor microenvironment is represented by the fact that ROS are also produced
by tumor-associated macrophage and myeloid-derived suppressor cells. In the case of
macrophages, the ROS are implicated in cell activation and in killing processes, while
for the myeloid-derived suppressor cells, the ROS are implicated as immunosuppressive
signals to regulate immune cell functions [139,140].

3.2. Pulmonary Diseases

The mtROS formation is excessive in Cystic Fibrosis (CF) cells [73]. This pathology is
characterized by genetic defects of cystic fibrosis transmembrane conductance regulator
(CFTR) gene and recurrent pulmonary infection, which cause chronic inflammation of
airways and respiratory failure. The persistent bacterial infections, in particular of P. aerugi-
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nosa, induce mitochondrial Ca2+-overload and mtROS formation in human CF bronchial
cells, which in turn promoted the activation of NLRP3 and NLRC4 inflammasome and
consequent release of IL−1 and IL−18 [109]. This interplay between NLRP3 and NLRC4
inflammasome has also been observed in CFTR-null mice, in alveolar CF macrophage,
and in CF neutrophils, due to mtROS and direct binding with oxidized mtDNA [98,141].
Limiting the abnormal mitochondrial Ca2+-uptake in CF and mediating pharmacological
inhibition of MCU, with KB-R7943, attenuated the pathogen-dependent ROS production
and mitochondrial dysfunction, preventing the activation of NLRP3 inflammasome and
UPRmt in vitro and in vivo [142].

The high levels of mtROS promote additional mitochondrial impairments in a feed-
back stimulatory manner that sustains the activation of oxidative-sensitive transcription
factors, which exacerbate the chronic pulmonary inflammation [2,143]. In fact, NF-kB, HIF-
1, and AP-1 are hyperactivated in CF, favoring an elevated production of cytokines and
chemokines, such as IL−8, and priming the inflammasome NLRP3 and its members. Their
activation is, due to intrinsic defects, associated with defective CFTR, such as the oxidative
stress and abnormal intracellular Ca2+ signaling [144–149].

The oxidative-sensitive nuclear recruitment of NF-kB also has a pivotal role in the chronic
obstructive pulmonary disease (COPD). Here, its involvement is a determinant in sus-
taining the chronic inflammatory response through the up-regulation of different pro-
inflammatory and chemotactic genes, including IL−8 and TNF-α, both important to COPD
pathogenesis [150].

3.3. Gastrointestinal Disorders

In the gastrointestinal (GI) tract the NOX and xanthine oxidase (XO) systems represent
the primary ROS producers. Notably, XO, which is mainly expressed in the liver and
in the intestinal mucosa, catalyzes the oxidation of hypoxanthine (HX) to xanthine and
the conversion of xanthine to uric acid. During these two reactions O2

·− is produced. Exces-
sive ROS production in GI is linked to inflammation and may be the cause of severe cellular
damages that can disrupt the tract barrier of GI, thus determining gut permeability and
contributing to different GI disorders. Gastroesophageal reflux (GR) represents a very com-
mon disorder, and all elements associated with GR, such as bile salts and acids, have been
found to be potent ROS inducers as well as a primary cause of loss of antioxidant defenses.
As a result, the squamous epithelium of esophagus undergoes erosion and ulceration [151].
Accordingly, by injecting antioxidants in a rat duodenogastroesophageal reflux model, ROS
amounts and esophagitis resulted reduced [152]. Gastritis represents the inflammation of
the stomach mucosa. When gastritis is chronic, it may be a cause of peptic ulcer disease.
Different conditions provoke gastritis, such as bacterial infection, stress, cigarette smoke,
and excessive alcohol consumption. All of them contribute to accumulating ROS and
activate inflammation, with a consequent infiltration of neutrophils and macrophages
in the gastric mucosa that can exacerbate the oxidative stress [153]. Interestingly, it has been
demonstrated that RNS results in being protective for gastric tract. Indeed, NO radicals
stimulate mucus secretion and inhibit the expression of adhesion molecule in the gastric
epithelium. In this manner, ROS-mediated ulceration is prevented as neutrophils cannot
adhere to the gastric mucosa [154]. In human intestinal diseases, the intracellular ROS
levels are increased, generating cell stress and a reduction in the diversity of microbial
community in the gut [155]. An increase of 10-100 times in mucosal ROS concentration
has been observed in ulcerative colitis, in gastroduodenal mucosal inflammation, Chron’s,
and inflammatory bowel diseases [156–158]. The epithelium barrier works to protect
itself and the gastrointestinal district by stressors, such as pathogens, secreting mucus
and antimicrobial peptides and low levels of ROS [159]. In this, the mitochondrial signal-
ing and concomitant metabolic changes contribute significantly to intestinal equilibrium.
In bowel epithelium, the mitochondrial impairment induces a metabolic imbalance that
causes reduction of stemness and generation of dysfunctional Paneth cells, which predicts
the Chron’s disease recurrence [160]. Indeed, an excessive increase in ROS production
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in gut has detrimental effects on the gastrointestinal membranes with consequent reper-
cussion on tissue permeability and microbial biodiversity. Many inflammatory-related
gastrointestinal disorders are associated with dysbiosis, an imbalance of gut microbiome
that is linked to the release of PAMPs that induce inflammation [161].

3.4. Cardiovascular Diseases

The importance of oxidative stress in cardiovascular diseases (CVDs) has been contin-
uously demonstrated. Overproduction of ROS and other oxidative stress-related factors
are indeed the primary cause of diverse CVDs, in particular during atherosclerosis and
myocardiac infarction. Low-density lipoproteins (LDL) are major cholesterol carriers, and
their levels play a crucial role in atherosclerosis. Increased oxidative stress determines
conversion of LDL in oxidized LDL (ox-LDL), which represent pathogenic, immunogenic,
and atherogenic particles. In this conformation, LDL can enter the monocyte-macrophage
system present in the arterial wall and cause the atherosclerotic process [162,163]. In partic-
ular, ox-LDL may increase the expression of the intercellular adhesion molecule-1 (ICAM-1)
and vascular-cell adhesion molecule-1 (VCAM-1), improving the adhesion of monocytes to
the arterial endothelium [164]. Ox-LDL also determine the secretion of monocyte chemo-
tactic protein-1 (MCP-1) and monocyte colony stimulating factor (mCSF) by stimulating
smooth muscle cells (SMCs) and endothelial cells (ECs) migration and proliferation [165].
Increase in inflammatory levels during atherosclerosis may also be mediated by oxidative
stress. High ROS levels, in particular H2O2, directly stimulate macrophages to express
chemokines and inflammatory cytokines to boost the inflammatory response at the site
of the atherosclerotic endothelial injury. The immune receptor NLRP3 is also involved
in atherosclerosis. Consistently, NLRP3 components are present in SMCs and ECs [166].
Most importantly, high NLRP3 levels characterize patients with coronary atherosclerosis
and correlate with the severity of disease and with concomitant. Interestingly, increased
NLRP3 levels also correlate with the presence of concomitant risk factors in patients with
coronary artery disease. In particular, it has demonstrated that the presence of oxLDL
primes and activates NLRP3 components. Accordingly, by treating endothelial cells with
an inhibitor of component of NLRP3 ASK1 (GS-4997) it is possible to attenuate the in-
flammatory process, the ROS production, and, most importantly, the effects of oxLDL on
the cholesterol efflux [167]. Cigarette smoking represent one of the major risk factors for
the development of atherosclerotic plaque. It has been demonstrated that nicotine improves
the mtROS levels and activate a molecular pathway where NLRP3 and pyroptosis cooper-
ate to promote monocyte recruitment, release of pro-inflammatory factors, and pyroptotic
cell death of ECs [168]. In particular, OGG1 is responsible for removing 7,8-dihydro-8-oxo-
2′-deoxyguanosine (8-OH-dG), the most abundant form of oxidative DNA damage [169].
It has been demonstrated that OGG1 downregulation leads to increased mtDNA damage
as well as activation of NLRP3 inflammasome in atherosclerotic lesion [170]. Consistent
with this, increased mtDNA damage levels have been observed in human atherosclerotic
plaques (Yu et al., 2013).

Ischemic cardiac injury happens during myocardial infarction and represents the result
of an occlusion of a coronary vessel, in which cardiac cells suffer a hypoxic condition,
ATP depletion, and mitochondrial impairments. It has been demonstrated that during
the ischemic condition complexes I and III result compromised, favoring the excessive
mtROS production. This situation provokes severe damage to different phospholipid
components of mitochondrial membranes, such as cardiolipin, leading to impairments and
destabilization of ETC members, depletion of ATP production, mitochondrial permeability
transition, and finally, cell death. Accordingly, to these findings, for several years, a quick
restore of the blood supply (reperfusion) was though essential to limit the cellular damage.
Consistently, reperfusion restores oxygen delivery, ATP production, and mitochondrial
Ca2+ levels. At the same time, the reintroduction of blood rich in oxygen is deleterious
for hypoxic tissue, which triggers an uncontrolled mtROS production by complexes I
and III, determining mPTP opening, mitochondrial membranes permeabilization, and cell
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death [171–173]. Recently, it has been proposed that during ischemia/reperfusion (IR),
the ETC may be not the only source of mtROS, indicating that other mtROS producers are
involved [174].

As reported above, MAO are proteins localized on the OMM and are responsible
for the generation of H2O2 [175]. It has been demonstrated that during IR the MAO-A
expression increases in cardiomyocyte and it is responsible for producing excessive H2O2
production, which provokes mitochondrial damage. Interestingly, it has been proposed
that during IR, the excessive ROS production mediated by MAO-A is sufficient to block
the activity of sphingosine kinase, degrades sphingosine-1-phosphate (S1P) and increases
the ceramide levels [176]. Notably, S1P suppresses the ceramide-mediated cell death [177].
Consistent with these findings, inhibition of MAO-A reduces mitochondrial lipid peroxida-
tion and limits the cardiac infarct size, representing a potential therapeutic intervention
against cardiac IR [178].

Another important contributor for mtROS production is the protein p66Shc, which is
expressed in cardiomyocyte and is responsible for regulating different cellular
processes [46,179,180]. Genetic silencing of p66Shc reduces the mtROS production and
limits the lipid peroxidation, determining cardioprotective effects during IR model.

Among the different mechanisms through which ROS provoke IR injury of the heart,
ROS-mediated inflammasome activation has an important contributor. In fact, mediator
of inflammasomes, such as IL−1 and ASC, have key roles during cardiac IR injury and
their inhibition exerts protective role against myocardium in mice exposed to IR [181,182].
In addition, it has been suggested that the role of NLRP3 in cardiac IR may be related to
the member of α-arrestin protein superfamily, Thioredoxin-interacting protein (TXNIP).
In a recent work, it has been demonstrated that during myocardial IR the interaction
between TXNIP and NLRP3 resulted in an increase, and that following intramyocardial
injection of TXNIP siRNA, the NLRP3 activation as well as the infarct size was reduced [183].
Moreover, when mtROS scavengers were added, the association between TXNIP and
NLRP3 and the inflammasome activation were abrogated, suggesting that mtROS are
responsible for activating the TXNIP -mediated activation of NLRP3 [183].

3.5. Neurodegenerative Disorders

Alzheimer’s (AD), Parkinson’s (PD), and Huntington Disease (HD) are neurodegen-
erative disorders with significant motor and cognitive decline, and, to date, incurable
diseases associated to aging [184].

The progression of neurodegenerative diseases is associated with neuroinflamma-
tion promoted by protein aggregation and/or neuronal damage via damage-associated
molecular patterns (DAMPs) and consequent activation of PRRs, such as CR3 and TLR-4,
with the pivotal contribution of mtROS [185,186]. The activation of these receptors induces
neuroinflammation mediating the recruitment pro-inflammatory signaling transducers,
such as NLRP3 and NF-kB, which, activated by oxidative stress, promote the synthesis
and release of pro-inflammatory mediators [187–189]. The susceptibility of neural tissue
to oxidative stress is not only due to elevated ROS production but also reduced regen-
eration capacity of neurons and their modest antioxidant defenses [190]. The immune
responses in neurodegenerative diseases are regulated by microglia cells, which mediate
both protective and deleterious responses [191].

In AD, the release of pro-inflammatory cytokines, IL−1, is mediated by assembled
NLRP3 inflammasome in activated microglia in response to aggregation of amyloid- pro-
teins and consequent plaque formation [192–194]. Indeed, amyloid- has been shown to
target the mitochondria, affecting the mitochondrial enzymes, alcohol dehydrogenase and
cytochrome C oxidase [195]. A direct link between mtROS and the pathology has been
observed also in transgenic mouse model and in human brain tissue [196,197]. The neuro-
toxicity in AD is also favored by activation of NLRP3 inflammasome, which induces tau
abnormality favoring tau phosphorylation and aggregation [198,199]. Its deactivation has
protective effects in AD [200]. Mitochondrial dysfunction, mtROS formation, and conse-
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quent NLRP3 inflammasome activation are also associated with bipolar and intracerebral
hemorrhage disorders [201,202].

The progression of pathology is also conditioned by insidious aspect of mitochondrial
signaling under oxidative stress, such as the persistent activation of UPRmt, which may
exacerbate the disruption of neurons in vivo or induce the release of neuroprotective
mitokines in AD, such as humanin [202,203]. Humanin reduce the neuroinflammation and
the oxidative stress-induced injury in AD, diminishing the level of protein aggregation and
of plaque deposition [204,205].

The production of ROS and the activation of NLRP3 is sustained and elevated also
in PD, where microglia cells, in response to Lewy bodies and -synuclein protein, also
release cytokines IL−6, TNF, and prostaglandins [206–208]. In particular, the alterations
in complex I of ETC are the primary source of mtROS formation in PD patients, causing
nigrostriatal degeneration observed in PD [209–211].

In HD patients, it is the activity of complex II of ETC that is diminished [212], with
significant repercussions on mitochondria and mtDNA integrity, the cause of massive
inflammation that damages the striatum [213]. In this area, only the pro-inflammatory
cytokines IL−1 and TNF were increased, while IL−6, IL−8, and MMP-9 were up-regulated
in cortex and cerebellum, two districts that normally are spared in HD [214].

The direct involvement of mitochondria in AD and PD is confirmed by the compart-
mentalized ROS suppression mediating mitoTEMPO, where the treatment reduced the ex-
pression of pro-inflammatory mediators, IL−1, IL−6, TNF, iNOS, and COX-2 in murine
microglia cells, limiting the nuclear translocation of NF-kB and MAPKs [215].

3.6. Diabetes

Diabetes is described as a multifactorial and complex metabolic syndrome character-
ized by deficit in metabolism of carbohydrates, fats, and proteins. Consistent with this,
hyperglycemia represents the main pathological condition.

A hyperglycemic condition can determine increase the mitochondrial flux determining
increase in oxidative stress [216]. This elevation may be due to an increase in production
of ROS/RNS (such as ONOO−, OH, 8-OHdG, and H2O2) through the ETC as well as de-
creases of antioxidant defense systems, in particular, catalase (CAT), glutathione peroxidase
(GSH), and SOD [217,218].

In addition to this, nutrient overload determines increases in insulin synthesis de-
mand, which forces -cells to product insulin [219]. ER is the primary organelle involved
in protein synthesis. An uncontrolled insulin demand promotes an increase in disulfide
bond formation for correct protein folding at ER, a condition that increases the ROS for-
mation [220]. As a consequence, protein folding fails and ER functions are impaired [221].
Mitochondrial oxidative stress and ER stress create a vicious cycle that increases oxidative
stress and affects further the functioning of these determinant organelle. Considering
that both ER and mitochondria are crucial for controlling the glucose levels in blood and
in -cells, the hyperglycemic condition becomes chronic. When this situation occurs, it is
highly harmful for both insulin secretion and survival of -cells and diabetes may develop.

In addition, the excess in ROS production may deregulate the expression of important
key factors (such as MafA and PDX-1) necessary for the activity of different genes involved
in insulin generation [222].

ROS-dependent hyperglycemic damage is also associated with other cellular processes,
in particular inflammation, and one of the primary targets of hyperglycemic damage are
the vascular endothelial cells (VES). Notably, VES are not able to regulate the intracellular
glucose concentration and when blood presents excessive amounts of glucose, they cannot
prevent the glucose entry. This condition, together with uncontrolled ROS levels, promote
damage and vascular complications [223,224]. Consistently, it has been demonstrated
that in human aortic endothelial cells, the inhibition of ROS production by uncoupling
of ETC reduced the chemokine IL−8 expression induced by high level of glucose [225].
The hyperglycemia-induced monocyte-endothelial adhesion and successiv transmigration
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was also enhanced in human coronary artery, where the mtROS promoted the redox-
sensitive NF-kB activation and the expression of adhesion molecules, such as ICAM-1 and
VCAM-1 [226].

The activation of the nuclear transcription factor NF-kB in diabetes is the result of
ROS generation promoted by the excessive glucose and by saturated fatty-acids. TLR-4
senses the excess of saturated fatty-acids favoring the oxidative-dependent up-regulation of
inflammatory genes, which determine the markedly release of pro-inflammatory mediators
involved in monocyte adhesion and chemotaxis, such as IL−8 [227,228].

Vascular tissue is not the only target for ROS-driven inflammation in diabetes. The pres-
ence of inflammatory partner has also been identified in pancreas. Indeed, activated
macrophages are present in the pancreas of diabetic persons and are responsible for
the damage and cell death of pancreatic islet through ROS [229]. In this context, it has been
proved that by using ROS scavenger, it is possible to reduce the inflammatory events and
increase the pancreatic cell survival [229].

4. Conclusions

In recent years, the mitochondria have been increasingly assuming a key role in the patho-
genesis of human diseases. Always considered the cellular powerhouse, the mitochondrion
also acts as a strategic hub in diverse cellular process, such as inflammation. The mito-
chondrion is involved in the regulation of inflammation through multiple mechanisms,
not only by releasing mDAMPs but also by affecting the mitochondrial stress responses
or influencing the inter-organelle communications between ER and/or nucleus. Their
involvement in the inflammation has suggested a new concept, the mito-inflammation,
a compartmentalized inflammatory response that may be targeted to cure a wide range
of inflammatory-associated pathogenic conditions. Consistently, different studies show
how mtROS are the principal actors, fuel that feeds and sustains this process. It has been
established that mtROS are endogenously signaling molecules, involved in a complex-
ity of interactions. At low levels, they are necessary to regulate cellular functions and
stimulate the mitohormesis, while their excessive accumulation is damaging to cells. Un-
derstanding the mechanisms by which mtROS communicate will aid in the development
of mitochondrial targeted therapies for human inflammatory-related diseases. The mito-
chondrial antioxidant is the compartmentalized antioxidant strategy finer to counteract
the ROS production to mitochondria. To this, targeted antioxidants have been developed,
such as MitoQ and SkQ1 that reduce the severity of many inflammatory-related patholo-
gies [230]. The mitochondrially antioxidant strategy has demonstrated cardioprotective
efficacy decreasing the mtROS accumulation in many cardiac diseases [231]. MitoTEMPO
and MitoQ protect from reperfusion injury and heart failure [232–235], while the mitochon-
drial Szeto-Schiller-31 peptide prevents oxidative stress and mitochondrial dysfunction
targeting cardiolipin [236]. mtROS formation may be inhibited using MAO inhibitors.
Several MAO inhibitors are clinically available for the treatment of neurological disorders
and are currently the better compartmentalized strategy to counteract the mtROS formation
in clinical use [237].

Many questions regarding the molecular function of mtROS and of mito-inflammation
remain to be addressed. These findings and those that will be obtained in the coming
years will increasingly reinforce the contribution of mitochondria and the mitochondrial
quality control machinery in the mito-inflammation regulation, warranting the efforts of
researchers to develop new mitochondria-targeted therapies.
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