
Cell Calcium 92 (2020) 102308

Available online 16 October 2020
0143-4160/© 2020 Elsevier Ltd. All rights reserved.

Mitochondria as the decision makers for cancer cell fate: from signaling 
pathways to therapeutic strategies 

Ilaria Genovese a, Bianca Vezzani a, Alberto Danese a, Lorenzo Modesti a, 
Veronica Angela Maria Vitto a, Virginia Corazzi b, Stefano Pelucchi b, Paolo Pinton a, 
Carlotta Giorgi a,* 
a Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy 
b ENT & Audiology Department, University Hospital of Ferrara, Ferrara, Italy   

A R T I C L E  I N F O   

Keywords: 
Mitochondria 
cancer 
Ca2+ signaling 
mitophagy 
bioenergetics 
cGAS-cGAMP-STING pathway 

A B S T R A C T   

As pivotal players in cellular metabolism, mitochondria have a double-faceted role in the final decision of cell 
fate. This is true for all cell types, but it is even more important and intriguing in the cancer setting. 

Mitochondria regulate cell fate in many diverse ways: through metabolism, by producing ATP and other 
metabolites deemed vital or detrimental for cancer cells; through the regulation of Ca2+ homeostasis, especially 
by the joint participation of the endoplasmic reticulum in a membranous tethering system for Ca2+ signaling 
called mitochondria-ER associated membranes (MAMs); and by regulating signaling pathways involved in the 
survival of cancer cells such as mitophagy. Recent studies have shown that mitochondria can also play a role in 
the regulation of inflammatory pathways in cancer cells, for example, through the release of mitochondrial DNA 
(mtDNA) involved in the activation of the cGAS-cGAMP-STING pathway. 

In this review, we aim to explore the role of mitochondria as decision makers in fostering cancer cell death or 
survival depending on the tumor cell stage and describe novel anticancer therapeutic strategies targeting 
mitochondria.   

1. Introduction 

Cancer is the second leading cause of death worldwide. According to 
the World Health Organization, approximately 1 in 6 deaths are due to 
cancer. This pathology is driven by uncontrolled cell proliferation, 
where cells accumulate errors augmenting the dysregulation of vital 
cellular pathways. One of the hallmarks of cancer is the reprogramming 
of metabolic needs and energy metabolism [1]. A crucial role is played 
by mitochondria in this process. 

Mitochondria are the powerhouses of cells, providing the energy and 
substrates necessary for a plethora of cell functions and orchestrating 
cell viability, apoptosis and differentiation [2]. In mitochondria, pro-
teins necessary for oxidative phosphorylation (OXPHOS) and the elec-
tron transport chain (ETC) are involved in the tricarboxylic acid (TCA) 
cycle and other metabolic pathways. This organelle has its own genome 
(mitochondrial DNA, mtDNA) that encodes some of the mitochondrial 
proteins, whereas the other proteins are nuclear-encoded and imported 
into the organelle. 

Given its importance, much recent scientific research has focused on 
the role of mitochondria in tumorigenesis, cell proliferation and 
metastasis dissemination. Indeed, the amount of energy required for 
cancer cell growth and dissemination is strictly dependent on the 
mitochondrial state and on its final decision of the cell fate. 

For instance, during tumorigenic transformation, cells undergo sig-
nificant metabolic remodeling that can result in the imbalance of 
mitochondrial anabolism and catabolism. Reactive oxygen species 
(ROS) are molecules produced as a result of OXPHOS or the electron 
transfer reaction catalyzed by the P450 system in mitochondria [3–5] in 
steroidogenic tissues. Once produced, ROS can be utilized by cells as 
signaling molecules, thus enhancing proper cell function. ROS over-
production represents a serious threat to cells since mitochondria can be 
driven toward the activation of programmed cell death [6]. Indeed, 
cancer cells often increase the production of NADPH as a strategy to 
detoxify ROS and escape apoptosis [7]. 

Moreover, there are other examples of alterations in mitochondrial 
metabolism that lead to the production of so-called oncometabolites, 
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such as succinate, 2-hydroxyglutarate (2-HG) and fumarate, that accu-
mulate in many tumors, supporting cancer cell proliferation [8–13]. 

As stated, damaged mitochondria drive cellular dysfunction, which 
stimulates a variety of pathological processes, such as aging, inflam-
mation and cancer [14]. Mitochondria can influence the viability of cells 
by intervening in mitochondrial dynamics with processes known as 
mitophagy, mitofission and mitofusion. Mitophagy is a pathway that is 
activated when flawed mitochondria are recognized and targeted for 
degradation by a specific autophagic pathway. There is much experi-
mental evidence, both in in vitro and in vivo models, supporting that the 
suppression of autophagic players subsequently leads to an increase in 
mitochondrial mass and dysfunctions resulting in the accumulation of 
ROS and oncometabolites [15,16], possibly supporting tumor growth. 

Evidence shows that most of the proteins involved in mitophagy 
modulation are dysregulated in cancer patients, but they can act as 
tumor suppressors or promoters depending on the cancer subtype and 
context [17–19], which is controversial. On the one hand, tumorigenesis 
is driven by the inhibition of mitophagy, while on the other hand, tumor 
progression depends on functional mitophagy [20]. 

Furthermore, mitochondria represent central hubs for the regulation 
of Ca2+ flux in cells, and even influence the decision between cell life or 
death. In recent years, many achievements have been made in the 
characterization of mitochondria-associated ER membranes (MAM)- 
mediated Ca2+ signaling in diverse pathological settings, from cancer to 
inflammation and from neurodegenerative disorders to cardiovascular 
diseases [21–24]. 

Ca2+ is fundamental for mitochondrial health, function and meta-
bolism, and sufficient impairments in Ca2+ homeostasis have detri-
mental effects on ATP production and cell viability. Thanks to 
specialized proteins such as MCU, VDAC, NCLX and others, mitochon-
dria are able to modulate their Ca2+ load in response to pathophysio-
logical conditions, leading either to cell proliferation or cell growth 
arrest and death [25–29]. Nevertheless, the literature is still conflicting 
on the nature of Ca2+ transfer necessary to trigger programmed cell 
death. 

In addition, the direct correlation between mitochondria-related 
pathways and cancer proliferation is worth introducing a novel link 
between cancer, mitochondria and inflammation deserving of investi-
gation. This link correlates cytosolic DNA sensing, at the basis of the 
inflammatory response, to cancer, possibly paving the way for new 
investigations. 

Once the mitochondria undergo persistent damage, they release 
mtDNA in the cytosol through the opening of the mitochondrial 
permeability transition pore complex (mPTPC) [30]. The release of 
mtDNA activates the cGAS-cGAMP-STING pathway, which is generally 
involved in microbial DNA recognition. It is thought that an inappro-
priate mtDNA-dependent inflammatory response can have a role in 
many pathologies and is mainly linked to inflammation/infection and 
cancer [31]. This pathway is based on cyclic guanosine monophosphate 
(GMP)–adenosine monophosphate (AMP) synthase (cGAS), which 
functions as a DNA sensor triggering the innate immune response thanks 
to the production of cyclic AMP and GMP, which bind and activate the 
adaptor STING [32]. 

Thus, mitochondria are important either for cell growth, specifically 
in the cancer setting but also for cell death, upon certain stimuli. For this 
reason, they can be considered the ultimate decision makers for cancer 
cell fate. Novel therapies centered on mitochondrial-dependent 
signaling pathways are under increasing investigation since they can 
provide intriguing and successful strategies for cancer and other diseases 
treatment [33–37]. Nevertheless, there is still lack of clarity about their 
specific role in boosting or inhibiting cancer progression. In this review, 
we aim to shed light on mitochondrial controversy in cancer progres-
sion, focusing both on mitochondrial function/dysfunction, 
mitochondria-related signaling pathways and describing the latest 
findings in the field of mitochondria-oriented cancer therapy. 

2. Mitochondria and Ca2þ signaling in cancer cell proliferation 

2.1. Physiological mitochondrial Ca2+ homeostasis and MAMs 

Ca2+ is a versatile second messenger involved in the control of 
numerous cellular processes, such as secretion, neuron excitability, 
muscle contraction, and cell migration [38–40]. 

Given its importance, the cytoplasmic Ca2+ concentration is main-
tained at approximately 100 nM thanks to the cooperation of pumps, 
channels and exchangers located at the plasma membrane (PM) that are 
able to regulate the influx into the cytoplasm, as for the channels and 
pumps at ER or mitochondrial membranes that can modulate the Ca2+

intracellular homeostasis regulating ER-cytoplasm and ER-mitochondria 
Ca2+ transfer. 

Moreover, much evidence demonstrates that this ion is important in 
cancer progression, especially during proliferation, invasion, migration 
and apoptosis [41]. 

At rest, cytoplasmic and mitochondrial Ca2+ concentrations are 
similar and maintained at low levels (~100 nM range or lower) [42]. In 
contrast, the endoplasmic reticulum (ER), the primary intracellular Ca2+

storage location, can reach a Ca2+ concentration range in the hundreds 
of μM [43]. Even though mitochondria are known as the cell power-
house, they are, at the same time, a central hub for Ca2+ signaling in 
cooperation with the ER in a specialized tethering membranous system 
named MAMs. Indeed, for the proper activation of physiological pro-
cesses, Ca2+ must transfer from the ER to mitochondria, and this transfer 
between the two organelles takes place at MAMs [44–46]. The latest 
findings have shown that Ca2+ signaling regulation at MAMs plays a role 
in many processes, one of which is cell proliferation [47,48]. 

Physiologically, upon cell stimulation with agonists, inositol 1,4,5- 
trisphosphate (IP3) is produced and subsequently generates the release 
of Ca2+ from the ER through the opening of IP3 receptors (IP3Rs), 
inducing transient Ca2+ uptake into the mitochondrion [49], which in 
turn activates various processes, such as secretion, neuron excitability, 
muscle contraction, and cell migration. 

Ca2+ enters the mitochondria, driven by the mitochondrial mem-
brane potential (ΔΨ), crossing the outer mitochondrial membrane 
(OMM) by high conductance voltage-dependent anion channel 1 
(VDAC1). Subsequently, through the mitochondrial calcium uniporter 
(MCU) the ion crosses the inner mitochondrial membrane (IMM) 
entering and accumulating in the mitochondrial matrix [50,51]. The 
MCU is crucial for mitochondrial Ca2+ uptake, and it works in cooper-
ation with numerous proteins that contribute either to its formation or 
the regulation of its activity, as we will explain later in this section [52, 
53]. 

The Ca2+ signal released from the ER towards the mitochondria must 
be modulated in a spatiotemporal fashion to trigger apoptosis or cell 
proliferation [54,55]. Indeed, depending on the type of Ca2+ signaling 
that occurs, cell death or cell survival programs can be activated. In fact, 
the dysregulation of the ER-mitochondrion Ca2+ signaling axis can be 
associated with many types of diseases, such as diabetes, 
muscular-related diseases and cancer, in which uncontrolled prolifera-
tion and inhibition of apoptosis are major signatures [56]. For clarity 
sake, in the following paragraph we refer to ER-mitochondria associa-
tion for Ca2+ transfer, not to be confused with MAMs themselves, formed 
by the association of mitochondria and ER membranes. 

2.2. The current theories about Ca2+ signaling as proliferative or 
apoptotic stimulus 

MAMs represent a hub for many tumor suppressors and oncogenes. 
The proper translation, expression and function of these proteins in 
healthy conditions prevents the survival and proliferation of damaged 
cells and enables the induction of programmed cell death in response to 
persistent stress stimuli [57,58]. In contrast, altered expression or ac-
tivity of tumor suppressors and oncogenes can influence 
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Ca2+-dependent resistance to cell death by the direct regulation of the 
main players of Ca2+ signaling at MAMs: IP3R3, SERCA (sarco/endo-
plasmic reticulum Ca2+-ATPase) VDAC1 and the MCU complex, conse-
quently modifying the homeostasis of mitochondrial Ca2+. 

In particular, limited Ca2+ transfer from the ER to mitochondria by 
the action of activated oncogenes such as Bcl-2 [59–64], Bcl-XL [65–68] 
and Ras [69–71] or inhibited tumor suppressors such as PML [72–74] 
PTEN [75,76], and p53 [22,69,77–79] has been related to a reduced 
stress-induced cell death rate. 

However, three recent studies contradicted the concept that a 
reduced ER-mitochondria Ca2+ signal is present in anti-apoptotic and 
pro-tumoral models. Indeed, they state that, in certain types of tumors, 
the overexpression of IP3R3, an IP3R isoform that can enable ER- 
mitochondrial Ca2+ transfers, can drive oncogenesis and malignant 
cell transformation. Initially, cell death is promoted by increased Ca2+

transfer to mitochondria, inducing the development of surviving anti-
apoptotic gene expression programs [80–82]. The link between IP3R 
expression and the real amount of Ca2+ transferred to the mitochondria 
subsequently leading to cell death susceptibility remains elusive and 
needs further elucidation. 

Despite the fact that the three IP3R isoforms (IP3R1 and IP3R2) are 
involved ER-mitochondria Ca2+ transfer in different cell types, IP3R3 
remains the most reported player in Ca2+ transfer between ER- 
mitochondria in cancer setting. Nonetheless, recent evidence show 
that also IP3R2 is one of the most effective in the regulation of ER- 
mitochondria Ca2+ transfer [83]. 

However, it is fascinating how this double-faceted role of ER- 
mitochondria Ca2+ transfer as a pro-apoptotic or anti-apoptotic 
signaling pathway resembles MCU complex observations. 

Recent studies carried out on the individual components of the MCU 
complex, either in cell lines or in a mouse model, are still debating the 
role of mitochondrial Ca2+ signaling as an apoptosis trigger. 

In different neoplastic contexts, an increased function of the MCU 
complex has been observed [25]. The overexpression of MCU in HeLa 
cells [53,84], primary cortical neurons [85] and cerebellar granule 
neurons (CGNs) [84] enhances cell death in response to various stress 
stimuli (such as C2-ceramide, NMDA and H2O2) [53,84]; in contrast, 
when MCU is downregulated, cells are protected from apoptosis because 
of the reduced mitochondrial Ca2+ uptake that prevents mPTP opening 
and the release of cytochrome c through the OMM [85,86]. 

Considering that: i) since not all apoptotic stimuli are related to 
mitochondrial Ca2+ overload and ii) sustained Ca2+ uptake in the 
organelle is not toxic by itself, it is therefore important to understand the 
role played by the single components of the MCU complex in terms of 
expression levels and activity in order to correlate mitochondrial cal-
cium homeostasis to various types of cancers [87]. 

Upon stress stimulus, apoptosis induction is generally related to high 
and persistent levels of mitochondrial Ca2+ uptake, which promote the 
activation and consequent opening of a key effector of cell death, the 
mPTP [88,89]. In contrast, tumorigenesis apoptosis escape, is supported 
by an alteration of Ca2+ signaling, where the reduction of mitochondrial 
Ca2+ uptake is related to the dissociation of F0F1 ATP synthase dimers at 
the base of mPTP openings and activation [90]. 

Several studies have also focused on MCU complex components and 
their role in mitochondrial Ca2+-related cell viability. Briefly, MCU is 
organized as a pore forming complex consisting of multiple subunits 
[91], however it does not work alone, since its function strictly depends 
on other IMM proteins as: EMRE (Essential Mcu REgulatou), MICU1 
(MItochondria Calcium Uptake 1), MICU2 (MItochondria Calcium Up-
take 2), MCUR1 (Mitochondrial Calcium Uniporter Regulator 1) 
[91–96]. Moreover, it has been found a paralog of MCU (MCUb) that 
lacks of channel activity and is generally less expressed, except for tis-
sues as lung, heart and brain [50]. MCUR1 enhances MCU activity 
directly interacting with it but not with MICU1 [92]. MICU1 and 2 have 
an opposite effect on the regulation of MCU: MICU2 acts as a MCU in-
hibitor, while MICU1 limits the uptake of Ca2+ during basal conditions, 

but it can also support Ca2+ uptake when [Ca2+]i increases [97] Even if 
its function is still under investigation, what it is known is that EMRE 
acts as a Ca2+ sensor on both sides of IMM and requires MICU1 and 
MICU2, besides its silencing abolishes MCU function. As a matter of fact, 
it plays a double role, depending on [Ca2+]cyt, it protects mitochondria 
both from both Ca2+ overload and depletion [98] (Fig. 1). 

For instance, MICU1 as a negative regulator of MCU acts as a gate-
keeper to prevent Ca2+ mitochondrial overload. Although its role is not 
entirely clear, it has been related to different types of cancer. Loss of 
MICU1 leads to an increase in basal levels of Ca2+ in the mitochondrial 
matrix, promoting programmed cell death in both non-tumor and tumor 
cells. However, knockdown of MICU1 is also associated with the pro-
duction of ROS in the mitochondrial matrix, a decrease in ATP and 
modification of mitochondrial morphology, reinforcing the cell death 
program [25,99,100]. 

Moreover, other evidence has shown that MICU1 is overexpressed in 
ovarian cancer cell lines and is related to chemoresistance and poor 
prognosis. Indeed, MICU1 in vivo and in vitro silencing experiments in 
OvCa ovarian cancer cell line have demonstrated both an improved 
sensitivity to chemotherapy, a reduction of tumor growth with better 
prognosis, and a reduction of cell proliferation, invasion and migration 
capacity [101]. 

On the other hand, other studies have described that MICU1 over-
expression in the MDA-MB-231 breast cancer cell line is related to better 
prognosis, suggesting an oncosuppressive function [102]. 

Another study supports this oncosuppressive role of MICU1; it has 
been demonstrated that MICU1 maturation can be influenced by Akt, 
which seems to localize at the intermembrane space (IMS) of mito-
chondria. Akt phosphorylates a specific serine at the N-terminal region 
of MICU1. This post-translational modification induced by Akt causes 
the loss of MICU1 gatekeeper function, with a consequent increase in 
mitochondrial Ca2+ concentration at resting conditions, as well as the 
generation of ROS and tumor development [103]. 

In this regard, basal levels of mitochondrial Ca2+ and ROS produc-
tion are re-established in vivo, inhibiting Akt-dependent tumor growth 
through the expression of a non-phosphorylable MICU1 mutant. 

These data support the importance of the connection between tumor 
development and abnormal mitochondrial Ca2+ concentration under 
basal conditions, highlighting how MCU complex organization and ac-
tivity modification contribute to the aggressiveness of some types of 
tumors [103]. 

Of note, MCUR1 is another MCU regulator and the interaction 
mechanism with the complex has not yet been well characterized. 
However, it seems that MCUR1 has a structural function in the MCU 
complex, interacting with both MCU and EMRE (another positive reg-
ulatory subunit of the MCU complex). MCUR1 is required for mito-
chondrial Ca2+ uptake and maintenance of cellular bioenergetics; 
indeed, the loss of MCUR1 causes a structural change of the complex 
[104,105]. Several studies have shown that in hepatocellular carcinoma 
(HCC) cells, MCUR1 expression is increased, leading consequently to 
MCU complex dysregulation, which entails an increase in mitochondrial 
Ca2+ uptake related to cell proliferation, resistance to apoptosis, 
metastasis and poor prognosis [106] [107]. In fact, MCUR1 silencing, 
without changing cytosolic Ca2+ content, provokes a drastic decrease in 
the mitochondrial Ca2+ concentration that leads to cell death [93,107, 
108]. 

Furthermore, the connection between ER-IP3Rs and the 
mitochondria-MCU complex, in terms of Ca2+ transfer, is represented by 
VDAC, which, thanks to GRP75, forms a tethering system in the outer 
mitochondrial membrane that helps Ca2+ signal transmission directly 
from the ER lumen to mitochondria [109]. 

In particular, VDAC1 is responsible for Ca2+ uptake and, in a phys-
iological context, is considered a regulator of programmed cell death, 
and it seems to have increased expression in cancer, contrary to what is 
expected [110]. It has been shown that increased expression of VDAC1 
induces an enhanced Ca2+ flux into the mitochondria that contributes to 
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tumor progression, influencing energy metabolism, inhibiting pro-
grammed cell death, and promoting cell proliferation in lung, colon and 
breast cancers, in addition to being associated with poor prognosis in 
these types of tumors [111]. Moreover, in numerous types of cancer, 
there is in vivoand in vitro evidence showing that proliferation, tumor 
growth and tumor regression are inhibited through VDAC1 RNA inter-
ference (RNAi) [112]. 

Furthermore, several studies have demonstrated that in addition to 
tumor suppressors and oncogenic proteins, microRNAs are also involved 
in cancer cell proliferation, particularly regulating mitochondrial Ca2+

signaling [78,113]. Notably, miR-7 targets the 3′-UTR of VDAC1 mRNA 
in human neuroblastoma SH-SY5Y cells and in mouse primary neurons. 
In fact, miR-7 overexpression causes a decrease in VDAC1 mRNA and 
protein levels, leading to a reduction in mitochondrial Ca2+ uptake and 
the inhibition of mitochondrial depolarization and fragmentation, 
which in turn prevents mPTP opening, cytochrome c release, and 
intracellular ROS generation, resulting in the blockage of the early 
stages of the apoptotic cascade [114]. 

An in silico study on five cancer-related miRNAs (miR-15, miR-17, 
miR-21, miR-25, miR-137) tested in HeLa cells showed that only miR- 
25 targeted the 3’ UTR of MCU mRNA, reducing MCU protein levels, 
with a consequent decrease in mitochondrial matrix Ca2+ accumulation 
and susceptibility of cancer cells to apoptotic stimuli, leading to an in-
crease in cell proliferation. Moreover, reduced MCU expression was 
observed, both in prostate cancer and colon cancer patient-derived cells, 
in correlation with an increase in the regulation of miR-25 [87]. 

Hong et al. showed that the cancer-like phenotype is related to high 
miR-138 and miR-25 expression. These miRNAs target MCU, reducing 
its expression, promoting a decrease in mitochondrial Ca2+

concentration and consequently inducing mitochondrial fission and an 
increase in [Ca2+]cyt and aerobic glycolysis [115]. In contrast, Yu C. 
et al. demonstrated that metastasis in breast cancer is related to the 
downregulation of miR-340, which leads to increased MCU expression. 
The miR-340/MCU pathway requires high expression levels of MCU, 
which relate to a higher concentration of mitochondrial [Ca2+], which 
implies a switch from oxidative to glycolytic metabolism, recognized as 
the “Warburg effect”, improving the invasion and migration capacity of 
breast cancer cells [116]. Given this evidence, the relationship between 
mitochondrial Ca2+ concentration and metabolic rewiring is still under 
debate and controversial. 

Notably, Ca2+ homeostasis deregulation can be considered a general 
hallmark of cancer, since it has a crucial role in apoptosis resistance, 
tumor development, tumor cell proliferation, invasion, metastasis and 
chemoresistance in cancer cells [117]. 

The current literature is still not unanimous on how Ca2+ signaling 
triggers apoptosis. Some studies have demonstrated that reduced mito-
chondrial Ca2+ uptake leads to diminished ATP production and activa-
tion of autophagy, which sustains cancer cell proliferation [74,77,79, 
118–123]. In contrast, other evidence indicates that active 
ER-mitochondria Ca2+ transfer activates MCU and induces a greater 
production of ATP, thus leading to cell proliferation [124] (Fig. 1). 

In conclusion, the data collected so far suggest that the aggressive-
ness of cancer cells could increase due to inhibition of effectors that 
regulate apoptosis. The role of mitochondrial Ca2+ concentration in this 
process is under continuous investigation; indeed, conflicting evidence 
still has not fully clarified whether mitochondrial Ca2+ transfer between 
the ER and mitochondria is tumor-promoting or toxic. To date, the ev-
idence is still conflicting on the type of Ca2+ transfer needed by cancer 

Fig. 1. ER mitochondrial Ca2+ transfer upon agonist stimulus can have two possible outcomes in cancer cells according to the current literature. On the one hand 
(left side of the figure), active Ca2+ uptake through the MCU complex leads to increased ATP production from OXPHOS that sustains cancer cell proliferation. MICU1 
phosphorylation by Akt can also support basal mitochondrial Ca2+ uptake through MCU in an agonist-independent fashion that can provide for mitochondrial 
metabolism and cancer cell survival and proliferation through the production of metabolites such as ROS. On the right side of the figure, the opposite body of 
evidence shows that a reduced mitochondrial Ca2+ uptake from the ER upon agonist stimulus, due to the downregulation of oncosuppressors such as PML and p53, 
leads to a decrease in ATP production that is sustained by the activation of autophagy. This coordinated action supports cancer cell proliferation (figure created with 
Biorender.com). 
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cells to sustain proliferation; apparently, both an active or a reduced flux 
can sustain tumorigenesis upon agonist stimulus. We attempted to 
summarize the contradicting results in Fig. 1. 

3. Mitochondrial bioenergetics in cancer cell proliferation 

In view of their leading role in energy production via OXPHOS, 
mitochondria are considered the bioenergetic powerhouse of the cell 
[125]. In addition to their energetic role, these dynamic organelles are 
central players in cellular metabolism, production of ROS, modulation of 
the redox status, control of Ca2+ homeostasis, regulation of cell signaling 
and programmed cell death (intrinsic apoptosis pathway) [126]. 

Alterations in these events can trigger a shift of the cell from a 
quiescent to a proliferating state [126]. Uncontrolled growth and pro-
liferation are well-known cancer hallmarks [127]. In recent years, 
growing evidence has pointed out the pivotal role of mitochondria in 
tumors. It has been reported that dysfunctional mitochondria that are 
rewired in the cancer context contribute to the metabolic reprogram-
ming of cancer cells, where they also modulate many cellular processes 
involved in oncogenesis [128]. 

Indeed, proliferating tumor cells exhibit profound metabolic rewir-
ing to support their biosynthetic needs [129]. This metabolic remodel-
ing is characterized by increased glucose uptake, a portion of which is 
redirected to the pentose phosphate pathway [130], and by the ability to 
oxidize or reduce glutamine to provide energy via the TCA cycle and the 
ETC [131], and interestingly, the capability to utilize glycolysis, 
OXPHOS and fatty acid oxidation in an interchangeable way to provide 
energy [11]. 

Alterations in the metabolic pathways of cancer cells were originally 
observed by Otto Warburg 70 years ago. Warburg and his collaborators 
noticed that even in oxygen-rich conditions, cancer cells predominantly 
rely on glycolysis, producing an excessive amount of lactate, while 
normal cells utilize OXPHOS to oxidize glucose inside the mitochondria 
[129]. Subsequently, this process has been defined as aerobic glycolysis 
or the ‘Warburg effect’, which he hypothesized to be related to a mito-
chondrial dysfunction that hampered cancer cells to effectively oxidize 
glucose carbon to CO2. 

Today, this principle has been applied in clinics through the use of 
18F-deoxyglucose positron emission tomography (FDG-PET) to image 
tumors with increased glucose uptake [132]. However, it is now 
recognized that properly functional mitochondria are essential for can-
cer cell proliferation and survival [127], as they are responsible for 
nutrient transformation into the building blocks required for cell growth 
[127]. Even if mitochondrial gene mutations are common in tumor cells, 
they do not suppress mitochondrial metabolism but rather alter mito-
chondrial bioenergetic and biosynthetic states. For example, defects in 
the genes for succinate dehydrogenase (SDH), fumarate hydratase (FH), 
and isocitrate dehydrogenase 1 (IDH1 and IDH2), as reviewed by Wal-
lace DC. 2012 [126], have been observed in a variety of human tumors 
[128]. Fumarate, succinate and 2-HG act as oncometabolites, behaving 
as mitochondrial signaling molecules altering gene expression and epi-
genetics, meaning that their excessive accumulation is sufficient to 
trigger cell proliferation and resistance to death [10]. 

The ability of mitochondria to provide necessary building blocks for 
anabolic metabolism, their capability to generate ROS and their pivotal 
role in the regulation of cell death signaling make them a key player in 
cancer proliferation [11] 

In most cancers, it has been reported that high levels of glycolysis are 
a follow-up of a deregulated PI3K/Akt signaling pathway and concom-
itant activation of oncogenes such as c-Myc and K-Ras or loss of PTEN 
and p53, which support the production of glycolytic intermediates that 
are conveyed into different biosynthetic pathways required for cell 
proliferation, such as the pentose phosphate pathway for NADPH and 
nucleotide synthesis [133,134]. Indeed, PI3K–PTEN–AKT pathway 
activation is one of the most common changes found in the cancer 
setting [132] that causes a shift from oxidative to glycolytic metabolism. 

The activation of this pathway increases the expression of glucose 
transporters on the cell surface and enhances glycolysis and protein 
translation through Akt-mediated mTOR stimulation, thus leading to 
changes in cellular metabolism that promote cancer cell growth and 
proliferation [126,132]. This occurs because cancer transformation 
generally comes with high and sustained proliferation together with 
mitochondrial alteration, so that cells try to provide essential meta-
bolism through cytosolic glucose metabolism. 

Both carbohydrates and amino acids, such as glutamine, are funda-
mental substrates for mitochondrial metabolism fueling [127]. Notably, 
glutamine is one of the most crucial nutrients utilized for cell prolifer-
ation. Moreover, the carbon backbone of glutamine is an important 
substrate for anaplerotic reactions that replenish TCA cycle in-
termediates [127]. 

Interestingly, it has been highlighted that cancer cells are able to 
increase the uptake and utilization of glutamine for their anabolic needs 
[135]. Upon activation of Myc, glutaminolysis is turned on, guarantee-
ing anaplerotic substrates for the mitochondrial TCA cycle. This event 
boosts the generation of citrate, which is exported to the cytosol where it 
is broken down to oxaloacetate and acetyl-CoA, which are required for 
lipid synthesis and protein modifications [126]. In addition, altered 
mitochondrial metabolism can increase the production of mitochondrial 
ROS, thus modifying the cellular redox status [126,136]. Moderately 
elevated ROS stimulates proliferation by inactivation of the tumor 
suppressor PTEN or by stabilization of HIF1-α [11]. 

Cell proliferation, similar to other cell functions, is regulated by Ca2+

release through ER-localized IP3R. IP3R-mediated Ca2+ signals also 
modulate cell metabolism, mainly by providing Ca2+ flux to mitochon-
dria, where it stimulates OXPHOS and ATP production [137,138]. It has 
been shown that physiological low-level IP3R-mediated Ca2+ release is 
crucial for maintaining basal levels of OXPHOS and ATP production in 
multiple cell types [120]. Upon disruption of Ca2+ transfer from the ER 
to mitochondria, ATP levels drop, followed by autophagy induction. 
Interestingly, the blockade of Ca2+ flux from the ER to mitochondria 
results in decreased OXPHOS, AMPK activation and autophagy 
enhancement, although different evidence has been reported. On one 
hand, Cárdenas and coworkers found that in breast and prostate cancer 
cells, autophagy is not sufficient to guarantee cell survival [139]. While, 
Missiroli et al. demonstrated that autophagy activation has pro-survival 
effects in cancer cells [74]. Thus, the dependence of tumorigenic cells on 
constitutive Ca2+ transfer to mitochondria for their viability suggests 
that mitochondrial Ca2+ addiction is a feature of cancer cells (see 
paragraph 1) (Fig. 2). 

To conclude, it could be useful to understand how tumor cells rewire 
and adapt their mitochondrial metabolism during tumor progression to 
develop novel anticancer strategies and to identify malignant signs that 
can be used as prognostic indicators [12]. 

4. Mitophagy and mitochondrial dynamics in cancer cell 
proliferation 

Mammalian cells are characterized by several highly interrelated 
mechanisms involving mitochondria that work as key quality controllers 
of many cellular processes. Among these processes, mitochondrial dy-
namics (fusion and fission) and macroautophagy (mitophagy) are 
particularly important. 

4.1. Mitofusion and Mitofission 

Mitochondrial fusion and fission are processes that determine the 
quality, quantity and shape of mitochondria [140,141]; these processes 
are closely intertwined with mitochondrial wellness; thus, they are 
involved in cellular functions such as proliferation, metabolism and 
migration [142]. Physiologically, mitofission is regulated by Drp1, a 
GTP-binding protein located at the mitochondrial membrane that forms 
a ring upon stimulus that induces the fission of the membrane, 
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hydrolyzing ATP [143,144]. On the other hand, mitochondrial fusion is 
regulated at the outer mitochondrial membrane (OMM) by mitofusin-1 
(Mfn1) and mitofusin-2 (Mfn2) but is mediated by OPA1 at the inner 
mitochondrial membrane (IMM) [145]. Posttranslational modifications, 
such as sumoylation, phosphorylation and ubiquitination, influence 
Drp1, Mnf1 and Mnf2 stability and affect mitochondrial dynamics [146, 
147]. It has been reported that in lung cancer cells, Mfn2 is less 
expressed than in normal tissue; indeed, the combined overexpression of 
Mnf2 and Drp1 inhibits lung cancer proliferation [148]. 

Therefore, mitochondrial fission and fusion can play a crucial role in 
promoting cancer cell proliferation, providing nonfunctional 
mitochondria. 

4.2. Mitophagy 

The term mitophagy indicates a crucial process in which damaged, 
dysfunctional or obsolete mitochondria are recognized by the auto-
phagic machinery in a self-degradation process that is typically stimu-
lated upon cellular stress or nutrient deprivation conditions. 

Since mitochondria have been implicated in a considerable number 
of vital processes (see introduction, Ca2+ signaling and bioenergetics 
paragraphs) and these organelles are also apoptosis hubs, it is not sur-
prising that a defective mitophagic process may lead to many human 

pathologies, including neurodegenerative disease [149,150], cardiac 
defects [151], type 2 diabetes [152] and, above all, cancer [153]. The 
tumor-mitophagy interplay is not yet well characterized, but it is 
assumed to be connected to oxidative metabolism and energy homeo-
stasis, since mitochondria are the primary site for ATP production, ROS 
production and glucose metabolism. Moreover, mitochondria are 
indispensable for cancer cells, where mitochondrial-harbored metabolic 
pathways are rewired to handle oxidative stress and to meet the 
increased bioenergetic needs. Most of the main proteins that take part in 
the mitophagic process have been shown to be dysregulated in cancer 
cells derived from patients, but whether they behave as tumor promoters 
or suppressors seems to be highly cancer subtype-related. 

One of the most studied tumor suppressors, p53, acts on mitophagy 
in a context-dependent fashion by either promoting [154] or inhibiting 
[155] this degradation process. Conversely, the tumor suppressive ac-
tivity of p53 is in turn regulated by mitophagy, indicating that there is a 
complex molecular circuit between p53 and mitophagy that supports 
cancer cell proliferation [156]. 

To date, the three best characterized mitophagy pathways in 
mammalian cells include the following: i) PTEN-induced putative kinase 
1 (PINK1)/E3 ubiquitin ligase Parkin, ii) BCL2/adenovirus E1B 19 kDa 
protein-interacting protein 3 (BNIP3)/BNIP3-like (NIX) and iii) FUN14 
Domain Containing 1 (FUNDC1) pathways (Fig. 3). 

Fig. 2. Cancer cells are often accompanied by dysfunctional mitochondria. Altered mitochondria cause rewired metabolism, where glucose and amino acids 
(glutamine) are the main sources sustaining cancer cell proliferation. Generally, cancer cells have a higher glucose uptake (through GLUTs) that supports glycolysis, 
the pentose phosphate pathway and, through the PI3K-AKT pathway, autophagy, shifting towards glycolysis and oncogene expression that enhance cancer cell 
proliferation. Moreover, the reduced Ca2+ transfer from the ER to mitochondria at MAMs affects both OXPHOS and ATP production. Dysfunctional mitochondria also 
produce certain oncometabolites, such as ROS, succinate, fumarate and 2-HG. ROS, when produced at normal concentrations, induce cancer cell proliferation; once 
overproduced, it is an apoptosis inducer. Succinate, fumarate and 2-HG are the result of loss-of-function mutations (for the first two) or mutations that help in the 
accumulation of these oncometabolites and the impairment of the TCA cycle, both in the mitochondria and in the cytoplasm, where they act on gene expression and 
epigenetic regulation to sustain cell proliferation (figure created with Biorender.com). 
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PINK1/Parkin is certainly the most studied pathway of mitophagy; 
these two proteins are activated upon the loss of mitochondrial mem-
brane potential to promote mitochondrial outer membrane protein 
proteasomal degradation and the selective elimination of damaged 
mitochondria by mitophagy. 

Parkin is a p53 target gene that regulates p53-mediated glucose 
metabolism and mitochondrial respiration [157]. 

It has been shown that mitophagy is of considerable importance in 
onset of the Warburg effect, which consists of a metabolic shift where 
tumor cells generate ATP mostly through glycolysis rather than 
OXPHOS, even in the presence of oxygen [158]. Stabilization of the 
hypoxia-inducible factor 1-alpha (HIF1α) subunit under hypoxic con-
ditions activates the expression of glycolytic factors, promoting the 
conversion of pyruvate into lactate and enhancing the transcription of 
the promitophagic receptors BNIP3 and NIX. The resulting increase in 
mitophagic activity leads to a mitochondrial mass reduction and an 
enhancement of cancer cell survival under low oxygen conditions [159]. 
As previously stated, Parkin can mediate the p53-dependent reduction 
of the Warburg effect, decreasing cellular glucose uptake and lactate 
release [157]. Parkin-deficient mice are highly prone to spontaneous 
hepatocellular carcinoma (HCC), and mutated Parkin has been found in 
lung cancer, colorectal cancer, breast cancer, and glioma. Parkin results 
deleted in 25% cases of colorectal cancer as well as in HCC. Parkin also 
exerts a tumor suppressive function in breast cancer, where the blockage 
of mitophagy boosts tumor progression [160–163]. 

Similarly, PINK1, which is known to be a sensor for mitochondrial 

dysfunction, plays an important role in tumor contexts. PINK1 expres-
sion loss induces ROS production and tumor growth through the stabi-
lization of HIF1α both in vitro and in vivo, although its overexpression 
has been reported in lung cancer and esophageal squamous cell carci-
noma (ESCC) patients [164]. 

Moreover, PINK1 expression is altered in other malignancies, such as 
neuroblastoma, glioblastoma, and ovarian cancer [165–167]. 
TANK-binding kinase 1 (TBK1) is a serine/threonine protein kinase that 
promotes mitophagy via the PINK-PARKIN pathway that seems to be 
involved in Kirsten rat sarcoma (K-Ras) activity, a proto-oncogene that 
plays a pivotal role in a variety of cancers, promoting readjustment of 
cell metabolism [168]. TBK1 mitophagy effector is overexpressed in 
different kinds of malignancies, such as breast, lung and colon cancer 
[169], and its depletion causes proliferation and survival defects in 
cancer cells [170]. 

It has also been shown that PINK1-Parkin-mediated mitophagy is 
responsible for iron importer degradation, which correlates with the 
HIF1α-dependent Warburg effect and inflammasome activation, conse-
quent to tumor cell mitochondrial iron accumulation. In this context, 
PINK1-Parkin loss of function accelerates mutant K-Ras-driven pancre-
atic tumorigenesis, suggesting that mitochondrial iron homeostasis may 
contribute to cancer development [171]. 

The BNIP3/NIX mitophagy pathway is usually triggered by hypoxic 
conditions, which leads to mitophagy-mediated growth suppression in 
several tumor types. BNIP3 prevents tumor progression in primary cells 
by inhibiting damaged mitochondrial accumulation; its lack, on the 

Fig. 3. Mitophagy is a controversial mechanism of damaged mitochondrial clearance that can have both antiproliferative or proproliferative effects on cancer cells. 
There are three main mitophagic pathways, all of which are typically triggered by the reduction of O2 in the organelle. The first pathway involves the action of 
PARKIN and PINK1, which can also be activated by p53 and TBK1 and reduce mitochondrial membrane potential. PARKIN, as an E3 ubiquitin ligase, can post-
translationally modify OMM proteins, favoring their degradation via the proteasome, thus enhancing mitochondrial clearance. They both have an effect on meta-
bolism, reducing the Warburg effect in the cytoplasm and increasing ROS production, activating HIF1. This in turn activates a transcription program that culminates 
with the activation of mitophagy, reduction of mitochondrial mass and cell proliferation. The second pathway involves BNIP3/NIX, which are both able to bind to 
LC3, activating mitophagy, which in this case, has a tumor suppressive function. BNIP3/NIX have a controversial role, since in some tumors, it has been reported that 
their transcription, via HIF1, supports cancer pro-proliferative mitophagy. The last pathway is also controversial; it involves the activation of a mitochondrial 
membrane receptor named FUNDC1, which can bind to LC3. This activation, however, can either inhibit or activate mitophagy-mediated cell proliferation (figure 
created with Biorender.com). 
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contrary, increases ROS accumulation and activates HIF1α, promoting 
cancer cell growth [172]. Currently, there is evidence in support of both 
an oncogenic and an oncosuppressive role of BNIP3. The role of NIX in 
tumor progression remains relatively obscure; however, it has been 
shown that NIX loss promotes tumorigenesis by avoiding p53-dependent 
apoptosis under hypoxic conditions in mouse xenografts and in glio-
blastoma models [173]. 

In addition to BNIP3/NIX, FUNDC1 represents a hypoxia-induced 
mitophagy receptor. It is located at the outer mitochondrial mem-
brane, and it is involved in hypoxia-induced mitophagy by binding to 
LC3 via its LIR motif (Y18xxL21) [174], thus playing an important role in 
the modulation of cancer onset and progression. Indeed LC3 is a crucial 
effector of autophagy/mitophagy, since it participates to the formation 
and stabilization of the autophagosome that subsequently blend into 
lysosomes for the organelle degradation. 

Recent findings on the role of this protein are still controversial; 
indeed, it has been reported that FUNDC1 suppresses the development 
of HCC by inhibiting inflammasome activation through mitophagy, 
while FUNDC1 expression is particularly increased in cervical cancer 
tissue [175,176]. 

A key role in the mitophagic process is also played by a large number 
of modulators and adaptors that can, in turn, participate in mitophagy- 
dependent tumor onset and progression. Of particular importance is 
p62, an autophagy substrate involved in the proteasomal degradation of 
ubiquitinated proteins that is used as a reporter of autophagy activity. 
p62-induced mitophagy maintains mitochondrial integrity, and its loss 
in human acute myeloid leukemia (AML) delays the elimination of 
dysfunctional mitochondria, thus increasing mitochondrial ROS levels 
leading to the inhibition of cancer growth both in vitro and in vivo [177]. 

New insights into previously unexplored mitophagy functions in 
relation to cancer pathologies are promising, and increasing knowledge 
of this peculiar mitochondrial self-degradation process may eventually 
lead to novel therapeutic approaches to treat cancer. 

5. cGAS-cGAMP-STING inflammatory pathway links mtDNA to 
cancer proliferation 

The importance of mitochondria in the development of tumors is 
based not only on their capability to control cancer cell proliferation but 
also on their ability to activate and modulate the innate immune 
response. Innate immunity is the key player in host defense; it protects 
the host not only from microbial pathogens but also from host-damaged 
tissues and cells. In the first scenario, host cells activate the immune 
response by recognizing conserved pathogen-associated molecular pat-
terns (PAMPs) with different pattern recognition receptors (PRRs), 
while in the second scenario, PRRs recognize host damage-associated 
molecular patterns (DAMPs) [178,179]. Increasing research demon-
strates the involvement of mitochondria in the innate immune response 
by their participation in PRR signaling, mainly in antiviral immunity 
[180–182]. Interestingly, mitochondria are not only crucial players in 
controlling inflammation but also represent an important source of 
DAMPs. Because of their bacterial origin, it is not surprising that mito-
chondria retain the bacterial ability to elicit robust inflammatory re-
sponses once damaged and released in the extracellular space [183]. 
This feature is due to the presence of N-formylated proteins that are 
recognized by PRRs and by the presence of hypomethylated CpG within 
mtDNA that, by resembling bacterial CpG DNA, activates Toll-like re-
ceptor 9 (TLR9) [184]. Supporting this hypothesis, administration of 
mtDNA in vivo or in vitro results in the development of inflammatory 
conditions or in increased pro-inflammatory cytokine secretion 
[185–187]. TLR9 is localized in intracellular compartments, mainly the 
endoplasmic reticulum (ER) and is responsible for the recognition of 
mtDNA that has been released in the extracellular space from necrotic 
cells [188]. A parallel mechanism aimed to sense cytoplasmic double 
stranded DNA (dsDNA), and as a result, the abnormal release of mtDNA, 
is the newly discovered cGAS–STING signaling. Cyclic guanosine 

monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) 
is an innate immune sensor able to monitor the presence of cytosolic 
dsDNA, triggering innate immune response activation in the case of 
antimicrobial defense, senescence, autoimmunity, and cancer [189, 
190]. Detection of dsDNA in the cytosol results in the establishment of a 
complex consisting of 2 molecules of cGAS bound to 2 DNA molecules 
[191,192]. At this point, cGAS undergoes molecular changes to trans-
form ATP and GTP into the second messenger 2’,3’-cyclic GMP-AMP 
(cGAMP) [193,194] which binds to its ER-resident adaptor protein 
stimulator of interferon genes (STING) [189,195]. Once activated, 
STING induces type 1 interferon (IFN 1) production by activating the 
transcription factors NF-ƙB and IRF3 via IκB kinase (IKK) and TANK 
binding kinase-1 (TBK1) pathways [196–199]. This cascade results in 
the massive production of type I interferons, pro-inflammatory cyto-
kines and other immune mediators that are responsible for the activa-
tion of the inflammatory response (Fig. 4) (for a complete review on the 
molecular mechanism and cellular function of this pathway we suggest a 
recently published review by Hopfner and Hornung [200]). Interest-
ingly, in addition to the antiviral and antibacterial functions of the 
cGAS-STING pathway, recent studies have suggested its involvement in 
different human diseases, mainly of inflammatory origin, including 
cancer [32,201]. In fact, as described, cGAS is able to detect both 
cytosolic dsDNA derived from pathogens and self-DNA leaked into the 
cytosol due to genome instability or cellular damage [202,203]. Inter-
estingly, some evidence suggests that cGAS-STING signaling can be 
activated differently by nuclear self-DNA and by mitochondrial 
self-DNA, even though definitive evidence is still missing [204]. 

The effects of the activation of this mechanism on carcinogenesis are 
still debated due to the presence of evidence proving both its anti-
tumorigenic and protumorigenic effects. It has been proposed that at the 
initial stages of tumorigenesis, the cGAS-STING pathway boosts immune 
surveillance against cancer cells, exerting an antitumorigenic effect. 
However, once the transformation has been overstepped, the dsDNA 
sensing pathway might help in the establishment of a chronic inflam-
matory state, enhancing tumor growth (Fig. 4) [204]. 

From an antitumorigenic perspective, it was initially assumed that 
due to its key role in prompting inflammation and immune surveillance, 
the cGAS-STING pathway primarily functions as a tumor suppressor 
[204]. At the early stages of cancer cell transformation, mtDNA is 
released in the cytosol upon mitochondrial dysfunction, subsequently to 
the mitochondrial outer membrane permeabilization (MOMP) [205]. 
MOMP not only causes the release of mtDNA but also of mitochondrial 
intermembrane space proteins, such as cytochrome c, which in turn 
activate caspases, resulting in apoptosis, a non-inflammatory form of 
cell death. Caspase activity is essential for the absence of inflammation 
in cases of mitochondrial-induced apoptosis because it is responsible for 
the inactivation of cGAS-STING signaling. If MOMP-induced caspase 
activition is blocked, released mtDNA will activate the cGAS-STING 
pathway, resulting in NF-ƙB activation and INF release [206,207]. 
This cascade of events, called caspase-independent cell death (CICD), 
leads to proinflammatory cytokine production, with the consequent 
activation of the immune response against the dying cell. Therefore, it 
has been proposed that if CICD is activated in a cancer cell, it will 
stimulate antitumour immunity [208], leading to the paradoxical hy-
pothesis that cGAS-STING signaling is responsible for the induction of an 
immune suppressive tumor microenvironment [209,210]. Moreover, 
STING knockout mice show an increased susceptibility to colorectal 
tumorigenesis once induced by chronic DNA damage and inflammation 
[211,212]. In KRAS mutant non-small cell lung cancer cells, it has been 
shown that cytosolic leakage of mtDNA activates STING signaling and 
that this specific type of tumor, which harbors its malignancy in mito-
chondrial dysfunction, epigenetically silences STING, therefore blocking 
downstream IFN signaling [213]. The ability to selectively down-
regulate cGAS and STING has also been shown in melanoma and colo-
rectal adenocarcinoma cells [214,215], and the inhibition of STING in 
melanoma and pancreatic cancer cells resulted in decreased immune cell 
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infiltration, with consequent increased tumor growth in vivo [216,217]. 
Remarkably, caspase activation is able to inactivate the cGAS–STING 
pathway, thus suppressing sterile inflammation, suggesting the presence 
of a control mechanism in the case of abnormal cytosolic dsDNA in the 
case of apoptosis [206,207]. This control mechanism, not yet fully 
characterized, is altered in cancer cells due to their ability to escape 
apoptosis. This scenario supports the protumorigenic vision of 
cGAS-STING signaling, which exerts its protumoral function by trig-
gering chronic inflammation and thus prompting an altered immune 
response [168,218]. Accordingly, the cGAS-STING pathway has the 
ability to trigger the formation of the NLRP3 inflammasome via either 
IFN I release or initiating potassium efflux upstream of NLRP3 activation 
[219,220]. As described, the activation of this pathway mediates the 
secretion of a variety of proinflammatory cytokines that can exert a dual 
effect. On the one hand, these cytokines work as immune-stimulatory 
factors that decrease cancer growth and recruit immune cells for 
tumor clearance, while on the other hand, the release of TNF-α elicits 
inflammatory-derived carcinogenesis, exacerbating tumorigenesis [204, 
221]. Interestingly, cancer cells are able to recruit mtDNA from the 
extracellular space to restore mitochondrial function and their meta-
static potential [222,223]. This ability suggests that cancer cells seek 
extracellular mtDNA to sustain cGAS-STING-driven tumorigenesis in 
addition to supplementing mitochondrial functions [204], supporting 
protumorigenic vision. 

In conclusion, the DNA sensing cGAS–STING pathway has a dual role 
in tumorigenesis: it is responsible for cytosolic mtDNA and dsDNA 
sensing, creating antitumoral immunity via the release of several 
proinflammatory cytokines, but at the same time, cancer cells have 
learned how to customize this mechanism to stimulate their survival and 

metastasizing ability. Therefore, other studies are needed to better un-
derstand this complex mechanism to develop pharmaceutical strategies 
to boost the cGAS–STING antitumor mechanisms. 

6. Targeting mitochondria as a cancer therapeutic strategy 

There is increasing evidence showing that mitochondrial targeting 
may represent an antitumoral strategy option with great potential. In 
this section, we aimed to describe scientific literature data from the last 
5 years (Table 1). The latest evidence seems to confirm that targeting 
mitochondria is associated with an improved survival rate and 
remarkable clinical effects in oncologic patients, although sometimes 
with a lack of uniform outcomes across different cancer types. 

6.1. Conjugating mitochondria-targeting compounds 

Several conventional drugs have been redesigned by conjugating 
mitochondria-targeting compounds to improve antitumoral effects. For 
instance, triphenylphosphonium ion-conjugated doxorubicin seems to 
reduce drug resistance; the mitochondria-targeted analog of glycyr-
rhetinic acid induces apoptosis in cancer cell lines through the induction 
of membrane permeability transition; F16 conjugated with chlorambucil 
causes mitochondrial DNA damage and apoptosis; mitochondria- 
targeted pro-delocalized charge conjugated with carboplatin accumu-
lates in cancer cells and seems to increase in transmembrane potential 
and hamper glutathione system, involved in redox detoxification [224]. 
The concept of pro-delocalized charge has been introduced by Reshet-
nikov et al [225]: the induction of delocalized charge within the cell is 
due to N-alkylamino ferrocene structure reacting with ROS; this is 

Fig. 4. The c-GAS-cGAMP-STING pathway links the release of mtDNA due to mitochondrial damage to inflammation pathway activation and cancer cell prolifer-
ation. This pathway is physiologically employed by cells to recognize microbial DNA to activate the innate immune response. In the cancer context, it has been 
reported that released mtDNA is recognized by cGAS, which forms a complex with 2 mtDNA molecules. This enzyme, thanks to ATP and GTP, can convert mtDNA 
into cGAMP. This is then sensed by an ER receptor named STING, which activates the transcription of the inducer of innate immune response. This activation leads to 
the release of IFN1. Depending on the activation timing of this pathway, there could be an antitumorigenic effect (early) that induces the intervention of immune 
surveillance in the clearance of cancer cells. When sustained, IFN1 production can permit the establishment of chronic inflammation, which elicits tumor progression 
and cell proliferation (figure created with Biorender.com). 
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considered a highly selective method for targeting tumor cells, as the 
positive charge is activated only in cancer cells, where ROS are over-
expressed. A mitochondria-targeted pro-delocalized charge conjugated 
with carboplatin has been clinically approved and seems to accumulate 
in human ovarian cancer cells where: i) increases the transmembrane 
potential and ii) hampers glutathione system, involved in redox detox-
ification [224]. 

6.2. Mitochondria-targeted synthetic peptides 

Biomedical research is also focused on mitochondria-targeted syn-
thetic peptides, known as MPPs, due to their biocompatibility and 
feasible synthesis. Compounds such as MPP-conjugated doxorubicin and 
MPP-conjugated mtPt (analog of platinum) have shown excellent 
cellular uptake and specific mitochondrial targeting [224]. 
Mitochondria-targeted peptides elicit mitochondrial dysfunction by 
either direct or indirect induction of OMM permeabilization, mPTPC or 
membrane disruption [226]. 

6.3. Photodynamic therapy 

Furthermore, photodynamic therapy has been considered among 
mitochondria-targeted anticancer strategies, particularly combining 
photosensitizers with MPPs [224]. Mitochondria-targeted photody-
namic therapy has been assessed to effectively induce tumor cell death, 
probably because of its inhibitory effect on the mitochondrial respira-
tory system [224]. 

Among mitochondria-targeted metal complexes, iridium-based 
complexes are the most studied photosensitizers, while among 
mitochondria-targeted small molecules, boron-dipyrromethane or 
cyanine dye showed better deep tissue penetration [224]. 

6.4. Targeting mitochondria bioenergetics 

Mitochondrial metabolism represents a crucial element in malignant 

Table 1 
Mitochondria-targeted approaches.  

Class Compound Target 

Conventional drug 
conjugate with 
mitochondria 
targeting ligand  

• Triphenylphosphonium ion- 
conjugated doxorubicin  

• Mitochondria-targeted 
analog of glycyrrhetinic acid  

• F16 conjugated with 
chlorambucil  

• Mitochondria-targeted pro- 
delocalized charge 

Redox detoxification 
systems 

Mitochondria 
penetrating peptide 
conjugated with 
cargo  

• MPPs-conjugated 
doxorubicin  

• MPPs-conjugated mtPt 

OMM permeabilization 
mPTPc opening 

Photosensitizer 
conjugate with 
mitochondria 
targeting ligand  

• Iridium-based complexes  
• Boron-dipyrromethane  
• Cyanine dye 

Electron transport 
chain 

Electron transport 
chain and oxidative 
phosphorylation 
activity inhibitors  

• Tamoxifen  
• α-Tocopheryl succinate  
• Metformin  
• Phenformin  
• 3-Bromopyruvate  
• ME344  
• Atovaquone  
• Arsenic trioxide 

Complex I, III, IV 

Glycolytic inhibitors  • Hexokinase inhibitors Glycolysis 
Isocitrate 

dehydrogenases 
inhibitors  

• AGI-5198  
• AGI-6780  
• AG-120  
• AG-221  
• 3BP  
• Dichloroacetate 

Tricarboxylic acid 
cycle 

ROS regulators  • NSC130362  
• Triphenylphosphonium ion- 

conjugated terpyridine-Pt  
• STA-4783  
• PEITC  
• LBL21  
• Oxymatrine  
• Capsaicin  
• Casticin  
• Myricetin 

ROS homeostasis, 
glutathione system, 
thioredoxin system 

Apoptotic pathway 
modulators 

Bcl-2 and/or Bcl-xL modulators:  
• Venetoclax  
• Navitoclax  
• Obatoclax  
• Oblimersen  
• TW-37  
• BM-1197  
• ABT-737  
• α-TOS 

Bcl-2, Bcl-xL 

Mitochondrial Ca2+

modulators 
Ca2+-ATPase inhibitors:  
• Thapsigargin  
• G202 
Ca2+ channel/transporters/ 
pumps modulators  
• BIRD-2  
• Xestospongin B  
• Caffeine  
• 4-chloro-m-cresol 

Mitochondrial Ca2+

uniporter, 
mitochondrial- 
associated 
endoplasmic reticulum 
membranes 

Mitochondrial 
permeability 
transition pore 
modulators  

• Clodronate  
• AppCCI2P 

Adenine nucleotide 
transporter, adenosine 
triphosphate 
translocation 

Overexpressed 
mitochondrial 
proteins 
modulators  

• Triphenylphosphonium ion- 
conjugated SMTIN-P01 

Chaperones 

Mitochondrial fission 
modulators 

Fission inhibitor:  
• MDIVI-1 
Fission inducer:  
• Saikosaponin  
• Resveratrol 

DRP-1 inhibitor 

Mitophagy 
modulators 

Mitophagy inducers:  
• Ceramides 

Mitophagy pathway  

Table 1 (continued ) 

Class Compound Target  

• Low-intensity ultrasound 
therapy with curcumin 
exposition  

• Phenanthroline  
• Deferiprone  
• Dihydroergotamine  
• Linamarase, linamarin and 

glucose oxidase system 
Mitophagy inhibitors:  
• Cyclosporine A  
• Mitochondrial division 

inhibitor-1  
• Liensinin  
• Genetic mitophagy 

suppression (downregulation 
of PINK1/Parkin-mediated 
mitophagy, downregulation 
of FUNDC1, PINK1, and 
AMBRA1) 

Synthetic lethal 
interaction  

• Silencing pyruvate 
carboxylase in succinate 
dehydrogenase deficient- 
cancer cells  

• Proline dehydrogenase with 
glutaminase inhibitors 

Mitochondrial 
metabolic 
reprogramming 

Immunotherapy  • Synthetic and natural STING 
agonist (DMXAA)  

• Radiotherapy  
• Chemotherapy  
• Antibody therapy  
• Viral therapy  
• Vaccines 

cGAS-STING pathway  
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cells; thus, targeting metabolic pathways could be an effective antitu-
moral strategy. Among the most significant mitochondrial targets, the 
ETC and OXPHOS activity are the most studied. Substances such as 
tamoxifen, α-tocopheryl succinate, phenformin, and 3-bromopyruvate, 
acting as electron transport chain inhibitors, induce an increase in 
ROS concentration and tumor cell mitochondrial-mediated apoptosis 
[227]. Metformin has been shown to reduce OXPHOS activity and tumor 
growth in several cancer types by inhibiting mitochondrial complex I, 
with a positive safety profile [228,229]. Furthermore, tagging complex I 
inhibitors with the triphenylphosphonium group seems to improve the 
specificity of the compound towards cancer cells, leading to effective 
cancer cell death in colorectal, lung and breast cancers [230]. 

Moreover, some ECT inhibitors are currently undergoing clinical 
trials for different types of cancer. One of them is the complex I inhibitor 
ME344, which is undergoing a clinical trial for the treatment of human 
epidermal growth factor 2-negative breast cancer; another inhibitor, 
named atovaquone, has been shown to inhibit complex III, and it is in a 
clinical trial for the treatment of acute myeloid leukemia; arsenic 
trioxide has also been reported to inhibit complex IV, representing an 
FDA-approved treatment for promyelocytic leukemia [229]. 

Furthermore, synergic administration with glycolytic inhibitors 
(such as hexokinase inhibitors) has been observed to further impair 
mitochondrial function and to further suppress cancer cell proliferation 
[231]. Glycolysis targeting could be an effective strategy to obtain se-
lective anticancer activity towards electron transport chain-mutated 
tumor cells [228]. 

Isocitrate dehydrogenase inhibitors (such as AGI-5198, AGI-6780, 
AG-120, AG-221, 3BP, and dichloroacetate) have been assessed to be 
effective as antitumoral agents in several cancer types, hampering the 
TCA cycle and blocking the accumulation of the 2-HG oncometabolite 
[232]. 

Furthermore, a possible mitochondrial metabolic reprogramming 
strategy has been proposed: silencing of pyruvate carboxylase in succi-
nate dehydrogenase-deficient cancer cells has been shown to hamper 
tumor progression, while the administration of proline dehydrogenase 
with glutaminase inhibitors has been shown to reduce tumor growth in 
several breast cancer cell lines [229]. 

6.5. Targeting ROS homeostasis 

ROS homeostasis represents another intriguing mitochondrial target 
in cancer therapy. According to some studies, targeting thioredoxin and 
the glutathione system, inducing oxidative stress and apoptosis, and 
targeting elevated ROS production in tumor cells seem to be effective in 
sparing normal cells both in vitro and in vivo [228]. In fact, Rozanov and 
collaborators demonstrated that the 1,4-naphthoquinine derivative 
NSC130362 was able to suppress the antioxidant glutathione system, 
consequently inducing oxidative stress and apoptosis in tumor cells 
while sparing normal human primary hepatocytes [233]. NSC130362 
has been shown to potentiate the cytotoxic activity of several pancreatic 
and prostate cancer drugs. Conversely, triphenylphosphonium 
ion-conjugated terpyridine-Pt has been demonstrated to inhibit the 
thioredoxin system and to induce apoptosis [224]. 

It has been observed that elesclomol sodium (STA-4783) increases 
mROS production and induces cytotoxicity and apoptosis processes in 
cancer cells [229]; similarly, β-phenylethylisothiocyanates (PEITC), in 
combination with metformin, have been stated to induce apoptosis, with 
an antiproliferative effect in ovarian cancers. On the other hand, LBL21, 
a PEITC analog, causes a superior cytotoxic effect in lung cancer cell 
lines and animal models [229]. 

Compounds such as oxymatrine, capsaicin, casticin, and myricetin 
were reported to kill cancer cells, enhancing ROS generation and 
interfering with mitochondrial redox balance [232], thus confirming 
that targeting mitochondrial ROS production may represent a possible 
therapeutic target, enhancing chemotherapy activity [227]. 

6.6. Targeting mitochondria-mediated apoptotic pathway 

Several drugs have been developed to target apoptotic pathways to 
induce cancer cell death by mitochondria-mediated apoptosis. Bcl-2 
and/or Bcl-xL inhibitors (such as Venetoclax, Navitoclax, Obatoclax, 
TW-37, and BM-1197)) or Bcl-2 expression inhibitors (such as Obli-
mersen) showed antitumoral activity in several cancer types, increasing 
apoptotic priming in cancer cells [227,229,232]; Bcl-2 homology-3 
domain mimetics (such as navitoclax, ABT-737, and α-TOS) also induce 
tumor cell death, activating Bax or Bak oligomerization and the 
apoptotic pathway [227]. Particularly, ABT-737 has been observed to 
resensitize tumor cells to drug-induced death when administered in 
combination with chemotherapy and radiotherapy [229] and to alter the 
mitochondrial membrane potential, hampering the glutathione system 
and consequently increasing ROS production [224]. 

6.7. Targeting mitochondrial Ca2+ homeostasis 

An alternative approach to mitochondrial-oriented cancer therapy 
could be the modulation of mitochondrial Ca2+ homeostasis. Indeed, it 
has been proposed as a possible antitumoral strategy, given the central 
importance of mitochondrial Ca2+ uptake for tumor cell survival and 
proliferation [234]. Several drugs targeting channels, transporters, and 
pump structures involved in Ca2+ homeostasis have been studied [235], 
many of which pinpoint proteins at cell membranes and ER, indirectly 
perturbing mitochondrial Ca2+ concentration. 

Thapsigargin (TG), a selective inhibitor of the SERCA (ER/SR Ca2+- 
ATPase) pump, has been observed to induce the programmed cell death 
pathway due to the enhancement of endoplasmic reticulum stress, the 
prevention of Ca2+ uptake into the endoplasmic reticulum and the 
depletion of the endoplasmic reticulum Ca2+ store [235], thus dimin-
ishing Ca2+ transfer at MAMs (see relevant section). Nonetheless, TG has 
not yet been used in clinical practice due to its nonselectivity for tumor 
cells. In contrast, mipsagargin (G202), an analog to thapsigargin con-
jugated to specific targeting peptides, has been shown to significantly 
reduce tumor progression in breast, bladder, and prostate cancers, with 
a good safety profile in animal trials [235] Furthermore, targeting the 
MAMs and Ca2+ channels/transporters/pumps, could represent another 
possibility to modulate mitochondrial Ca2+: BCL-2-IP3R disruptor 2 
(BIRD-2) increases mitochondrial Ca2+ uptake, inducing cancer cell 
apoptosis [229,236,237]; xestospongin B, an IP3R inhibitor, reduces 
cancer cell proliferation, inducing necrosis in tumorigenic breast cells 
[235]; caffeine and 4-chloro-m-cresol, ryanodine receptor agonists, 
induce apoptosis in prostate cancer and breast cancer cell growth 
reduction [235]. 

Thus far, MCU appears to be another promising target for mito-
chondrial Ca2+ homeostasis in the cancer setting, although to date, there 
is still no MCU-targeted effective therapy. Indeed, a study demonstrated 
that counteracting the inhibitory effect on MCU expression exerted by 
miR-25 through the overexpression of an anti-miR-25, it is possible to 
restore mitochondrial Ca2+ uptake and reverse apoptosis resistance 
[87]. 

The mitochondrial permeability transition pore complex (mPTPC) 
represents a crucial element in maintaining the mitochondrial mem-
brane potential, and upon ROS overproduction or mitochondrial Ca2+

signaling impairment, its opening is triggered. Clodronate has been 
assessed to depolarize the mitochondrial membrane potential, inhibiting 
adenine nucleotide transporter activity and oxygen consumption in 
macrophages in vitro; AppCCI2P, a clodronate metabolite, has been 
shown to induce apoptosis, inhibiting adenosine triphosphate trans-
location in isolated human osteoclasts [224]. 

6.8. Targeting overexpressed mitochondrial proteins 

Furthermore, targeting overexpressed mitochondrial proteins has 
been considered among possible antitumor strategies; for instance, 
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triphenylphosphonium ion-conjugated SMTIN-P01 has been shown to 
induce apoptosis by inhibiting the mitochondrial HSP90 (heat shock 
protein 90) isoform, known as TRAP1 (tumor necrosis factor receptor 
associated protein 1), an overexpressed chaperone in cancer cells [224]. 

6.9. Targeting mitochondrial dynamics and mitophagy 

Another valid anticancer strategy is represented by mitochondrial 
fission modulators, both inhibitors and inducers. Mitochondrial division 
inhibitor-1 (MDIVI-1) targeting DRP-1 inhibitor has been the only one 
tested as a fission inhibitor, showing an effective role as an adjuvant to 
cisplatin, promoting cancer cell death in several cancer types and to 
TNF-related apoptosis-inducing ligand (TRAIL) in ovarian cancer [229]. 
Saikosaponin is an upregulator of DRP-1 and a mitochondrial fission 
inducer; this compound showed synergy with cisplatin, inducing 
apoptosis in cisplatin-resistant ovarian cancer cells [229]. In colon, 
cervical, liver and breast cancers, resveratrol has been assessed to cause 
mitochondrial fragmentation and cancer cell death by DRP-1 upregu-
lation [229]. 

Targeting mitophagy pathways could represent a particularly effec-
tive therapeutic option as an enhancer of anticancer drug action. Se-
lective mitophagy modulation may cause a disruption of the balance 
between cell death and tumorigenesis, inhibiting tumor growth and 
promoting the elimination of cancer cells [17]. Several mitophagy in-
ducers have been reported. Ceramides and their analogues have been 
demonstrated to induce cancer cell death by autophagy and reduce drug 
resistance in a broad range of tumor types [238]. Wang et al showed that 
low-intensity ultrasound therapy was able to induce mitophagy and cell 
death in nasopharyngeal carcinoma cells incubated with curcumin 
[239]. Phenanthroline, a metal chelating agent, has shown to induce 
DRP-1 dependent mitochondria fragmentation, following ROS produc-
tion [240]. Deferiprone, an iron chelator, in known as another 
mitophagy inducer: it affects the respiratory chain complexes and 
function, binding to their iron-sulfur clusters [241]. Dihydroergotamine 
tartrate has been assessed to suppress lung cancer cell growth, by 
inducing mitophagy [242]. Linamarase, linamarin and glucose oxidase 
systems are known to activate mitophagy by suppressing glycolysis and 
oxidative phosphorylation [17,229,238,243]. However, a high level of 
mitophagy has also been correlated with anticancer therapy resistance, 
probably either due to a higher OXPHOS state and enhanced cell pro-
liferation or to better control of ROS production and mitochondrial 
transmembrane potential and the consequent reduction of the apoptotic 
process [18,244]. These findings have been pointed out in 
cisplatin-resistant oral squamous cell carcinoma and in 
doxorubicin-resistant or oxaliplatin-resistant human colorectal cancer 
stem cells, suggesting that mitophagy could possibly play a dual role in 
tumor treatment [19]. 

To date, there is limited evidence about mitophagy inhibitors as 
useful antitumoral treatments to promote tumor cell death while sparing 
normal cells, which are usually less susceptible to mitophagy inhibition 
[245]. For instance, cyclosporine A inhibits mitophagy by reducing 
mitochondrial outer membrane permeability; mitochondrial division 
inhibitor-1 disrupts the mitochondrial fragmentation process; liensinin 
has been observed to increase breast cancer cell sensitivity to doxoru-
bicin, thus confirming the usefulness of mitophagy inhibitors in associ-
ation with conventional antitumoral therapies [17,229,243]. 

Furthermore, genetic mitophagy suppression (downregulation of 
PINK1/Parkin-mediated mitophagy and Rab9a-mediated mitophagy 
and downregulation of FUNDC1, PINK1, and AMBRA1) has been shown 
to render tumor cells more sensitive to death induced by radio- and 
chemotherapy [19]. 

Moreover, mitochondrial clearance has been suggested to play a 
possible regulatory role during immunogenic cancer cell death induced 
by anthracyclines [246]. 

Nonetheless, to date, several issues about targeting mitophagy as an 
anticancer therapeutic option and the reaction of healthy cells to 

mitophagy modulators remain uncleared and deserve further 
investigation. 

6.10. Mitochondrial-related immunotherapy 

The latest novelties in the field of cancer therapy are related to 
immunotherapy, which represents an innovative therapeutic strategy 
aimed at increasing innate immunity and promoting a tumoral envi-
ronment with CD8+ T cell infiltration [247]. 

Considering that cGAS stimulates endogenous anticancer immunity 
and is sensitive to mitochondrial DNA released after mitochondrial 
damage, several therapeutic strategies focused on the cGAS-STING axis 
have been tested in various cancer models: synthetic and natural STING 
agonists, radiotherapy, chemotherapy, antibody-based therapy, viral- 
based therapy, and vaccines have shown effective antitumor activity 
[247]. One STING agonist, 5,6-dimethylxanthenon-4-acetic acid 
(DMXAA), promotes tumor regression in vivo in mouse models by 
inducing tumor hemorrhagic necrosis and has undergone phase II clin-
ical trials [248–250]. 

Nevertheless, data in the literature are still inconsistent, since there 
is evidence that the cGAS-STING axis may represent a protumoral 
pathway in some cancer types. To date, the issue of cGAS-STING- 
targeted therapeutic strategies is still under debate. 

6.11. Latest novel approaches 

Finally, novel approaches to mitochondrial targeted treatment have 
been suggested. For instance, targeting mitochondria trafficking has 
been proposed as a possible antitumoral strategy; mitochondrial relo-
cation to the periphery of the cancer cell is crucial for cellular movement 
and invasiveness, thus the use of compounds inhibiting mitochondria 
trafficking could represent an innovative strategy to reduce cancer cell 
migration, but further investigations are needed [229]. The mitochon-
drial unfolded protein response pathway, a transcriptional program 
aimed at repairing and recovering a mitochondrial perturbation or 
dysfunction, has been hypothesized to represent a novel strategy for 
oncologic patient treatment [251]. Of note, “drug-free” agents represent 
a brand-new therapeutic approach. This therapeutic strategy points to-
wards i) intramitochondrial aggregation, ii) intramitochondrial 
self-assembly, and iii) intramitochondrial biomineralization, all mech-
anisms postulated to lead to cell death and overcome drug resistance 
[224]. 

7. Concluding remarks 

Given its crucial function in promoting both viability and cell death, 
mitochondria represent one of the most intriguing targets for successful 
cancer treatment. The main obstacle is still its dual role in many vital cell 
pathways. Indeed, mitophagy and its related pathways can be either 
supportive of tumor growth or hinder them depending on cancer sub-
type, as mitochondrial Ca2+ uptake can sustain tumor growth to assist 
bioenergetics as though being toxic stimulus and induce apoptosis. 
Nevertheless, mitochondrial bioenergetics is still the most intriguing 
focus for the development of novel cancer therapies. Tumor cells, with 
dysfunctional mitochondria, mainly take advantage of glycolysis and the 
pentose phosphate pathway to produce ATP and reducing equivalents 
such as NADPH, as well as catabolism of amino acids such as glutamine, 
to sustain cancer cell energetic needs. Although, dysfunctional mito-
chondria are still able to perceive the activation of alternative anabolic 
and catabolic pathways in the cytoplasm. A recent study has demon-
strated that in malignant prostate cancer patients, OXPHOS is rewired to 
a metabolism mostly based on succinate oxidation, supported by the 
overexpression of respiratory complex II [252]. This means that mito-
chondria adapt to preserve cancer cell proliferation. 

Of growing interest is also the role played by mitochondria in cancer- 
related inflammation, specifically by the release of mtDNA in the 
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activation of the cGAS-STING pathway. This signaling, however, de-
pends on the timing of its activation during cancer transformation, and 
can either activate immune surveillance or support chronic inflamma-
tion, thus enhancing cancer cell growth. 

Mitochondria-oriented cancer therapeutic strategies have been 
developed in recent years, some of them with successful results. Many 
efforts are still needed to unveil all the controversies still existing in the 
mechanisms behind mitochondria-mediated cancer cell regulation to 
address the clinical unmet needs. 
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V. Granatiero, I. Szabò, D. De Stefani, R. Rizzuto, MICU1 and MICU2 finely tune 
the mitochondrial Ca2+ uniporter by exerting opposite effects on MCU activity, 
Mol. Cell. 53 (2014) 726–737, https://doi.org/10.1016/j.molcel.2014.01.013. 

[98] H. Vais, K. Mallilankaraman, D.-O.D. Mak, H. Hoff, R. Payne, J.E. Tanis, J. 
K. Foskett, EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the 
Mitochondrial Ca(2+) Uniporter, Cell Rep. 14 (2016) 403–410, https://doi.org/ 
10.1016/j.celrep.2015.12.054. 

[99] K. Mallilankaraman, P. Doonan, C. Cárdenas, H.C. Chandramoorthy, M. Müller, 
R. Miller, N.E. Hoffman, R.K. Gandhirajan, J. Molgó, M.J. Birnbaum, B. 
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