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inhibition of mitochondrial permeability transition pore (mPTP)
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The Mitochondrial Calcium Uniporter (MCU)
complex, the channel responsible for Ca2+ entry
inside mitochondria, is involved in a wide range of
diseases, including cancer [1]. Although elevated
mitochondrial Ca2+ levels have been associated to
apoptosis induction, probably by promoting the
activation of mitochondrial Permeability
Transition Pore (mPTP), a key effector of cell
death [2], up-regulation of MCU complex func-
tions have been observed in different cancer con-
texts [3]. Thus, it is unclear if increased
mitochondrial Ca2+ content could sustain cancer
progression or augment the susceptibility to apop-
tosis. Here, we show that high mitochondrial [Ca2
+] with concomitant mPTP inhibition could
potentiate migratory capacity and invasiveness of
cancer cells.

To test the impact of high basalmitochondrial Ca2+

levels on cancer-related features, we used HeLa cells
stably silenced for MICU1 gene [4] or PC3 prostate
cancer cells stably overexpressing the pore-forming
channel subunit MCU [5] (Figure 1(a)). Using
a mitochondrial-targeted GCaMP6m probe, which
displayed high Ca2+ sensitivity [4], we observed that
both MICU1 depletion and MCU up-regulation
induced an increase inmitochondrial [Ca2+] at resting
conditions (Figure 1(b–c)), due to the accumulation
of MCU channel complexes that are not regulated by
MICU activity [6,7]. Loss of the gatekeeping functions
predisposed to cell death induced by the Ca2+-
dependent apoptotic stimulus C2-ceramide (Figure 1
(d–e)), which is minimized by pre-treatment with the
known mPTP inhibitor Cyclosporine A (CsA), thus
suggesting that highMCUCa2+ affinity sensitizes cells

to apoptosis by affecting mPTP opening. Importantly,
in our cellular settings, highmitochondrial Ca2+ levels
do not promote cell death at basal conditions, indicat-
ing that the elevated capacity of mitochondria to
accumulate Ca2+ is not toxic per se. Moreover, CsA
treatment does not affect mitochondrial Ca2+ levels
(Figure 1(b–c)). With our surprise, analysis of cancer
cell proliferation, using a crystal violet-based assay,
revealed that CsA treatment strongly augmented the
proliferative rate of cells with high mitochondrial Ca2
+ content, either due to MICU1 depletion (Figure 1
(f)) or MCU over-expression (Figure 1(g)), without
affecting the growth of the control counterparts.

To further dissect this event, we examined other
cellular processes that are often associated with
tumor progression and aggressiveness. Firstly, we
measured the ability of both HeLa and PC3 to
migrate through a basement membrane following
a serum gradient using a Boyden chamber assay.
Treatment with CsA significantly increased the
capacity to cross the membrane exclusively in
MICU1 Knock-Down (KD) HeLa or MCU-
overexpressing PC3 cells (Figure 1(h–i)). Next,
we assessed the combinatory effect of higher mito-
chondrial Ca2+ levels and mPTP inhibition on the
capability to close the gap in a classical wound-
healing assay. As shown in Figure 1(j), CsA treat-
ment positively regulate MICU1 KD cells in the
closure of the wound (% of open area after 24
h from the wound: 9.23 ± 3.83), whereas it does
not affect the migration of control cells (plko
+CsA: 54.23 ± 7.18). Similar results have been
obtained in PC3 cells (Figure 1(k)), where CsA
promotes the closure of scratched area only in
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Figure 1. (a) Western blots of HeLa and PC3 cells to assess MICU1 andMCU levels. Antibodies used: GAPDH (#2118) and β-tubulin (#2128) by
Cell Signalling; MICU1 (HPA037480) and MCU (HPA016480) by Sigma-Aldrich. (b-c) HeLa (b) and PC3 (c) cells were transiently transfected
using Lipofectamine 2000 reagent (Thermo Fisher Scientific) with the mitochondrial-targeted GCaMP6m construct to assess basal mitochon-
drial Ca2+ levels at resting state. The cells were treated or not with 1μM Cyclosporine A (CsA). N = 4; **** p < 0.0001. Two-way ANOVA. (d–e)
Western blots of HeLa (d) or PC3 (e) cells, treated, where indicated, with 40μM C2-ceramide (C2-cer) for 4 h or 1 μM CsA for 4 h (alone or
added 1 h before C2-cer). Other antibodies used: cleaved PARP (#9541) by Cell Signalling; flag (F7425) by Sigma-Aldrich. (f–g) 10,000 HeLa (f)
or PC3 (g) cells were plated in five sets of five wells of a 12-well plate. Starting from the following day (day 1), cells were treated as indicated,
and 1 set of wells was washed once with PBS, fixed in 4% formaldehyde (PFA) solution for 10min at RT, and then kept in PBS at 4°C. At day 5,
all the wells were stained with crystal violet. After lysis with 10% acetic acid, the absorbance was read at 595 nm. N = 3; *p < 0.05; **p < 0.01;
***p < 0.001. Multiple t-test. (h–i) 1.5 × 105 HeLa (H) or 2.5 × 105 PC3 cells (I) were resuspended in medium without serum, with or without
CsA, and then seeded on Transwell 8 μm pore size (Corning Incorporated 3422), using 20% FBS as attractant. After 24 h or 48 h, respectively,
cells were fixed with PFA and stained with DAPI. N = 3; ****p < 0.0001. Two-way ANOVA. Scale bar: 200 μm. (j-k) HeLa (j) and PC3 (k) cells
were grown in 6-well plates to 80–90% confluence in medium supplemented with 10% FBS. The cell monolayer was then scratched with
a P200 tip, and then treated or not with CsA. Cells were allowed to close the wound for 24 h or 48 h, respectively. Migration distance was
measured using the ImageJ software. N = 3; *p < 0.05; ****p < 0.0001. Two-way ANOVA. (l–m) 3000 HeLa (l) or 6000 PC3 (m) cells grown in
6-well plates, treated or not with CsA. After 10 or 15 days, respectively, cells were fixed with PFA and stained with crystal violet. Colony
number was calculated using the ImageJ software. N = 3; ***p < 0.001; ****p < 0.0001; Two-way ANOVA.
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cells that express MCU at higher extent (% of open
area after 48 h from the wound: pcdna3+ CsA:
31.93 ± 3.43; MCU+CsA: 9.59 ± 3.64). Finally,
we measured the ability to form colonies in vitro,
a marker of tumorigenesis. CsA increased the
number of colonies of both HeLa cells stably trans-
duced with MICU1-directed shRNA (Figure 1(l))
and PC3 stably expressing MCU (Figure 1(m)),
highlighting the pro-cancerous effects of CsA
when tumor cell mitochondria can uptake Ca2+

at a higher degree as a consequence of aberrations
in the uniporter complex composition.

In conclusion, although elevated mitochondrial
Ca2+ entry generally predisposes to cell death, it
could potentiate tumor cell proliferation and inva-
sion when mPTP properties appear altered,
a condition that frequently occurs in multiple can-
cer scenarios, either through post-translational
events or the inhibitory activity of multiple pro-
malignant factors. In this light, it has been recently
shown as chronic mitochondrial Ca2+ aberrations,
obtained through MCU depletion, could generate
adaptive modifications of mPTP functions, sug-
gesting an altered death response in cells with
deregulated mitochondrial Ca2+ homeostasis [8].
Thus, a therapeutic strategy based on increasing
mitochondrial Ca2+ uptake could be inefficient in
cancer cells where the opening of mPTP is abol-
ished. Conversely, blocking the pro-cancerous
effects of mitochondrial Ca2+ entry could result
in a significant reduction of tumor progression.
The identification of the molecular signaling path-
ways that are regulated by mitochondrial Ca2+,
such as ATP or Radical Oxygen Species (ROS)
production, as well as metabolic changes induced
by mPTP inhibition, will furnish additional steps
for the comprehension of the role of mitochon-
drial Ca2+ and MCU complex in cancerogenesis.
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