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Abstract The mitochondrial permeability transition (MPT) consists of an abrupt 
increase in the permeability of the inner mitochondrial membrane to low molecular 
weight solutes, resulting in the osmotic breakout of the organelle. MPT drives cell 
death and provides an etiological contribution to several human disorders character-
ized by the acute loss of post-mitotic cells. These conditions include ischemia/
reperfusion injury, cancer and neurodegenerative disorders. However, precise knowl-
edge of the structure and regulators of the supramolecular entity that induces MPT, 
the so-called permeability transition pore complex (PTPC), is lacking and this con-
stitutes a substantial obstacle in the development of MPT-targeting agents with clini-
cal applications. Here we report the current evidences about molecular structure and 
regulatory components of PTPC. In particular we pay attention on new two proteins 
which recently were added to the list of PTPC components: the mitochondrial F1FO 
ATP synthase, particularly and the SPG7 paraplegin matrix AAA peptidase subunit. 
At least a detailed overview of MPT contribution to pathological condition is 
provided, focusing on the idea that to develop therapeutic drugs, it will be fundamental 
to understand the molecular composition of the PTPC.
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1  Mitochondrial Permeability Transition

The concept of the mitochondrial permeability transition (MPT) refers to a sudden 
and irreversible increase in the permeability of the inner mitochondrial membrane 
(IMM) to small solutes up to 1.5  kDa, leading to the progressive dissipation of 
mitochondrial transmembrane potential (∆ψm). This unregulated passage of water 
into the mitochondrial matrix results in the osmotic breakdown of the organelle 
(Bonora et  al. 2015); this implies the suspension of mitochondrial functions, 
including ATP production.

In the 1990s, the mechanism by which the MPT ultimately initiates a form of 
regulated cell death (RCD) that often (but not always) manifests with necrotic 
morphological features was shown (Galluzzi et al. 2015; Crompton and Costi 1990). 
The MPT also constitutes a central checkpoint in the apoptotic pathway; it can 
generate apoptotic waves. For example, when outer mitochondrial membrane 
(OMM) rupture occurs upon mitochondrial swelling, the release of proteins involved 
in the effector phase of apoptosis (such as cytochrome C, AIF, SMAC/DIABLO and 
EndoG) into the cytosol is inevitable. This notion is supported by various studies in 
which isolated mitochondria and living cells treated with MPT-inducing stimuli 
clearly show apoptotic-like features, and MPT targeting protects against cell death 
(Marchetti et al. 1996; Kroemer 1997).

A frequently discussed problem involves what determines the induction of necrosis 
or apoptosis upon MPT onset. The answer may reside in the ATP levels of the cell 
(Eguchi et al. 1997); when cellular ATP content is high, apoptosis can initiate and 
proceed, but when the energy level is low or insufficient, the necrotic pathway pre-
vails. In addition, and related to the ATP level, necrosis may be caused by a prolonged 
and irreversible MPT event experienced by all mitochondria in the cell. Conversely, 
the MPT may affect only one or few mitochondria (Duchen et al. 1998) allowing the 
cell to either recover completely or initiate the apoptotic pathway. However, it has 
recently been demonstrated how transient MPT events (called tPTPs or MitoWinks) 
are also correlated with normal physiologic manifestations that allow the resetting of 
mitochondria (Lu et al. 2016) that is essential for cell survival.

For these reasons, the MPT is a significant event in different human pathologies 
(e.g., reperfusion injuries, neurodegeneration, and cancer). However, precise 
knowledge of the structure and mode of action of the supramolecular entity that 
induces MPT, the so-called permeability transition pore complex (PTPC), is lacking, 
and this constitutes a substantial obstacle in the development of MPT-targeting 
agents with clinical applications.

The best-characterized MPT is triggered by the accumulation of Ca2+ ions in the 
cytosol and then in the mitochondria (Izzo et  al. 2016). Thus, besides the 
accumulation of mitochondrial Ca2+, major MPT stimulators include reactive 
oxygen species (ROS), inorganic phosphate, intracellular alkalinization, long-chain 
fatty acids, atractyloside and carboxyatractyloside. The latter two inhibit members 
of the adenine nucleotide translocase (ANT) protein family by locking them into a 
cytoplasmic-side open conformation (Brenner and Grimm 2006).
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Conversely, MPT inhibitors include ATP and ADP, NADH and NAD+, glutamate, 
bongkrekic acid, which locks ANT family members into a matrix-side open confor-
mation, 5-isothiocyanato-2-[2-(4-isothiocyanato-2-sulfophenyl) ethenyl]benzene-
1-sulfonic acid (DIDS), an inhibitor of voltage-dependent anion channel (VDAC), 
and cyclosporine A (CsA), which targets peptidylprolyl isomerase F (PPIF, best 
known as cyclophilin D, CyPD) (Martel et al. 2012).

The MPT-inhibitory potential of CsA has been documented so extensively, 
in vitro and in vivo, that this molecule is currently considered the gold standard 
method for the confirmation of presumed instances of MPT (Kepp et al. 2011).

2  Mitochondrial Permeability Transition Pore Complex: 
Molecular Structure

Despite the intense experimental interest generated by MPT throughout the last two 
decades, the precise molecular composition of the PTPC remains elusive.

Accordingly, the first PTPC model proposed at the end of 1990s was a supramo-
lecular entity assembled at the juxtaposition of the inner and outer mitochondrial 
membranes, composed by VDAC, ANT, and regulatory components including 
hexokinase 1 (HK1) and creatine kinase mitochondrial 1 (CKMT1) (Beutner et al. 
1996, 1998). Moreover, CyPD was supposed to have a central role in the PTPC due 
to its interacting partners (Crompton et al. 1998), which include VDAC and ANT, 
and its pharmacological profile (Tanveer et al. 1996).

This model was substantially challenged by genetic approaches. Indeed, the 
genetic co-inactivation of three distinct VDAC isoforms (Vdac1, Vdac2 and Vdac3) 
failed to protect murine fibroblasts from MPT induction by hydrogen peroxide (an 
MPT inducer) and did not influence the ability of their mitochondria to undergo 
MPT in response to Ca2+ (Baines et al. 2007).

Similarly, the simultaneous knockout of the genes coding for two distinct ANT 
isoforms, namely, Slc25a4 (encoding Ant1) and Slc25a5 (encoding Ant2), failed to 
abolish the ability of murine hepatocytes to succumb to several MPT inducers, 
including the Ca2+ ionophore Br-A23187, in a CsA-inhibitable manner. Moreover, 
mitochondria isolated from Slc25a4−/−Slc25a5−/− hepatocytes retained the ability to 
undergo MPT in vitro upon exposure to a depolarizing agent (Kokoszka et al. 2004).

The only component to survive genetic analysis was CyPD (Baines et al. 2005; De 
Marchi et  al. 2006), confirming its role as a modulator of the PTPC.  Indeed, it is 
unlikely that CyPD, which is mainly localized within the mitochondrial matrix, would 
constitute the pore-forming component of the PTPC. Therefore, CyPD is currently 
viewed as the major gatekeeper of the MPT, regulating the opening of the PTPC but not 
lining up the pore that physically allows for the entry of low-molecular- weight solutes 
into the mitochondrial matrix. Additionally, CyPD played a central role in the identifi-
cation of (or attempts to identify) the channel-forming components of the PTPC core, 
primarily through the identification of CyPD-interacting proteins.
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50

For instance, in 2008, the phosphate carrier PiC was shown to bind CyPD and 
ANT1, an interaction that was potentiated by MPT-inducing conditions and inhibited 
by CsA (Leung et al. 2008).

Inorganic phosphate has been known since 1965 as an MPT-promoting metabo-
lite (Tedeschi et al. 1965), suggesting that the PTPC would possess a specific bind-
ing site. In physiological conditions, inorganic phosphate is transported across the 
inner mitochondrial membrane by members of the SLC protein family, including 
SLC25A3 (best known as PHC or PiC) and SLC25A24 (also known as APC1) 
(Palmieri 2004).

A high-throughput genetic screen showed that PiC overexpression promotes 
apoptotic cell death and that a small-interfering RNA-mediated depletion of PiC has 
cytoprotective effects (Alcala et al. 2008). Later, Baines and coworkers demonstrated 
that PiC is not a core component of the PTPC, although in its absence, the MPT 
occurred more slowly (Gutierrez-Aguilar et al. 2014; Kwong et al. 2014). Although 
the ability of PiC to influence mitochondrial dynamics may be involved in this 
process (Pauleau et  al. 2008), the exact molecular mechanisms by which PiC 
promotes cell death under some circumstances remain to be elucidated.

Concerning APC1, it is known that it can respond to increases in cytosolic Ca2+ 
levels, favoring the mitochondrial uptake of ATP and ADP and consequently inhibit 
MPT (Traba et al. 2012).

Recently, thanks to monitoring MPT in living cells using fluorescence-imaging- 
based techniques (Bonora et al. 2016), two proteins were added to the list of PTPC 
components: the mitochondrial F1FO ATP synthase, particularly the c subunit of the 
FO domain (which in humans is encoded by three genes, ATP5G1, ATP5G2 and 
ATP5G3), and the SPG7 paraplegin matrix AAA peptidase subunit (Giorgio et al. 
2013; Bonora et al. 2013; Alavian et al. 2014; Shanmughapriya et al. 2015) (in Fig. 1 
a model of PTPC is reported).

The mitochondrial F1FO ATP synthase is a multiprotein complex consisting of a 
globular domain that protrudes into the mitochondrial matrix (F1 domain) and an 
inner mitochondrial membrane-embedded domain (FO domain); the domains are 
interconnected by a central and a lateral stalk (Yoshida et al. 2001). Mammalian ATP 
synthases contain 15 different subunits: α, β, γ, δ, ε, a, b, c, d, e, f, g, A6L, F6 and O 
(also known as oligomycin sensitivity-conferring protein, OSCP). These subunits 
form a fully functional holoenzyme with a total molecular weight of ~ 600 kDa.

The interest in the mitochondrial F1FO ATP synthase as the possible molecular 
identity of the PTPC is the result of assays screening for potential CyPD binding 
partners. The screen identified CyPD as co-migrating with the mitochondrial F1FO 
ATP synthase in blue native gels (Giorgio et  al. 2009) and the subunit OSCP 
(oligomycin sensitivity conferring protein) as a binding site (Giorgio et al. 2013).

In this study, Giorgio et al. proposed that the PTPC forms from dimers of the F1FO 
ATP synthase (Giorgio et  al. 2013). Indeed, the mitochondrial F1FO ATP synthase 
dimers excised and extracted from blue native gels and reconstituted into lipid bilay-
ers have been reported to provoke currents that are consistent with the known electro-
physiological properties of the PTPC. However, no PTPC-like currents were observed 
after the addition of monomeric F1FO ATP synthase that was extracted from the same 
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blue native gel. These data have not been reproduced by independent investigators and 
appear to contradict several studies demonstrating, for instance, the cytoprotective 
effects of endogenous molecules that promote F1FO ATP synthase dimerization 
(Garcia et al. 2006). Interestingly, in 2016, Gerle highlighted that a straightforward 
alternative explanation could be the loss of PTPC- specific subunits during extraction 
from the excised gel bands or reconstitution into the black membrane. Indeed, bovine 
F1FO ATP synthase comprises 17 different subunits of which the two FO subunits 
DAPIT and 6.8 kDa are easily lost during extraction of this fragile multisubunit mem-
brane complex from the inner mitochondrial membrane (Gerle 2016). However, 
robust evidence excluding a key role for F1FO ATP synthase dimers in the MPT has not 
yet been provided. Only recently, it was reported that MPT induction is linked to F1FO 
ATP synthase dimers dissociation and that stabilizing F1FO ATP synthase dimers by 
genetic approaches inhibits PTPC opening (Bonora et al. 2017).

An alternative proposal for a pore-forming entity within the components that make 
up the mitochondrial F1FO ATP synthase highlights its proton-transporting c-ring.

F1FO ATP synthase c-rings consist of multiple copies of c subunits, varying 
between species (8–15), that are arranged as a circle (Pogoryelov et al. 2012). As 
describe above, the c subunits of F1FO ATP synthase are encoded by three genes, 
ATP5G1, ATP5G2 and ATP5G3, and it has been shown that cells depleted of 
ATP5G1 or ATP5G3 exhibit reduced sensitivity to MPT-driven RCD (Bonora et al. 
2013; Alavian et al. 2014).
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Fig. 1 Hypothetical PTPC molecular structure. MPT is mediated by the opening of a supramolecu-
lar entity, called PTPC, assembled at the juxtaposition between mitochondrial membranes. Structural 
and functional studies show that multiple mitochondrial and cytosolic proteins intervene in the 
formation or regulation of the PTPC, yet the actual pore-forming unit of the complex remains elusive. 
These proteins include VDAC, ANT, HK, CYPD, PiC, TSPO, CKMT1; in the text a detailed explana-
tion is reported
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In 2013, Bonora et al. examined PTPC formation after depletion of the c-subunit 
mediated by small interfering RNA knock-down, demonstrating, for the first time, that 
the c subunit of FO is required for MPT, mitochondrial fragmentation and cell death 
induced by mitochondrial Ca2+ overload and oxidative stress (Bonora et al. 2013).

One year later, the proposal that the c-ring formed the core of the PTPC was sup-
ported by Alavian et al., who demonstrated how the c-ring could generate a non- 
specific current that was attributable to the PTPC because of a rearrangement that 
promoted an increase in the c-ring diameter.

Nevertheless, it seems unlikely that the c-ring itself constitutes the PTPC. Indeed, 
Alavian et  al. proposed that this event required CypD activity, but they did not 
propose a molecular mechanism through which this activity could be transmitted to 
the c subunit.

In 2016, Elustondo et al. provided an elegant confirmation of previous reports 
and a more defined mechanism of action for the MPT. Specifically, during Ca2+-
induced MPT, the c subunit associates with inorganic polyphosphate (polyP) and 
polyhydroxybutyrate (PHB), promoting the generation of a water-permeable 
channel (Elustondo et  al. 2016). The c subunit is a hydrophobic protein with 
properties that are similar to those of lipids, and it is not expected to be able to form 
water-filled pores in its c-ring. Therefore, these data suggest that the c subunit is 
responsible for forming the calcium-dependent channel with the help of polyP 
possibly serving as the hydrophilic coating of the pore (Morciano et al. 2017).

Despite the increasing evidence for the pivotal roles of c subunits in the MPT 
(Halestrap 2014), a study in March 2017, by the Walker group showed the MPT in 
the absence of a c subunit (He et al. 2017). Specifically, they generated a clonal cell, 
HAP1-A12 (near-haploid human cell), in which ATP5G1, ATP5G2, and ATP5G3 
were disrupted. They reported that the HAP1-A12 cells were incapable of producing 
the c subunit, but they preserved the characteristic properties of the PTPC. These 
data are the results of a single cell clone, so clonal adjustment cannot be excluded. 
Indeed, they reported that HAP1-A12 cells assembled a vestigial ATP synthase, 
with intact F1-catalytic and peripheral stalk domains and supernumerary subunits e, 
f, and g but without membrane subunits ATP6 and ATP8. The authors did not 
exclude the possibility that the PTPC could be associated with the ATP synthase 
complex, but they speculated that the most likely components available to form the 
pore were the b, e, f, and g subunits (He et al. 2017). Although these data should be 
confirmed and strictly challenged before excluding the c subunits from the list of 
PTPC components, the creation of a cell clone characterized by ATP5G1, ATP5G2, 
and ATP5G3 deletion will improve experimental research regarding the involvement 
of c-subunits in the MPT.

Finally, SPG7, an integral protein of the inner mitochondrial membrane with 
metalloprotease activity, has recently been identified as a PTPC component 
(Shanmughapriya et al. 2015). A phenotypic screen based on the mitochondrial Ca2+ 
retention capacity (CRC) of digitonin-permeabilized cells after treatment with 
siRNAs designed to suppress translation of a set of mitochondrial proteins was used 
to identify regulators of the PTPC.  The screen identified 13 proteins whose 
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suppression caused desensitization of the PTPC to Ca2+, among which well-known 
modulators that do not take part in PTPC core formation, such as CyPD, were 
revealed. Stable depletion of CyPD, VDAC1, or SPG7 appeared to be equally 
effective in protecting cultured human cells from hydrogen peroxide-dependent 
PTPC opening. Moreover, it was shown that SPG7 could be co-immunoprecipitated 
with CyPD in a complex that also included VDAC1. The interaction between CyPD 
and SPG7 depends on the C-terminus of SPG7 (but not on its catalytic activity) and 
is sensitive to CsA. Indeed, a CyPD mutant lacking the seven highly conserved 
residues that constitute the CsA binding site is unable to bind to SPG7. Conversely, 
the transmembrane domain of SPG7 is responsible for VDAC1 binding and does not 
depend on CyPD–SPG7 interactions. Finally, deletion of SPG7 resembles the 
deletion of CyPD in terms of resistance to MPT-inducing stimuli (Shanmughapriya 
et al. 2015). Thus, SPG7 might constitute a key regulator of MPT. However, these 
findings have been obtained in cultured cells only, and they have not yet been 
reproduced by independent investigators.

2.1  Regulatory Components

Several proteins have been shown to regulate the activity of the core PTPC, includ-
ing cytosolic and mitochondrial proteins.

The translocator protein (18 kDa) (TSPO), a protein of the outer mitochondrial 
membrane, constitutes the benzodiazepine-binding component of the so-called 
peripheral benzodiazepine receptor, an oligomeric complex involving VDAC and 
ANT (Mcenery et al. 1992).

The physiological role of TSPO involves steroid biosynthesis regulation (Mukhin 
et al. 1989). Moreover, several studies have implicated TSPO in the MPT. Indeed, 
the ability of a series of endogenous (e.g., protoporphyrin IX) (Pastorino et al. 1994) 
and exogenous (e.g., PK11195, Ro5–4864, diazepam) (Hirsch et al. 1998; Chelli 
et al. 2001) TSPO agonists to cause an MPT has been reported. Although their roles 
in modulating the MPT are clear, the effects of TSPO ligands are variable, ranging 
from cytoprotective to cytotoxic (Kugler et  al. 2008; Shargorodsky et  al. 2012; 
Campanella et al. 2008; Decaudin et al. 2002).

Various kinases have been shown to interact with the core PTPC, such as 
CKMT1, HK1, HK2, glycogen synthase kinase 3β (GSK3β) and protein kinase Cε 
(PKCε) (Verrier et al. 2004).

Some of these kinases, including CKMT1, HK1 and HK2, do not phosphorylate 
protein substrates, implying that their MPT-modulatory activity originates either 
from their physical interaction with core PTPC components or from their ability to 
catalyze metabolic reactions.

CKMT1 is localized to the mitochondrial intermembrane space, and it can bind 
to VDAC1 and ANT1 (Beutner et  al. 1996, 1998). Additionally, CKMT1 
phosphorylates creatine to generate phosphocreatine, a reaction that is tightly 
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coupled to oxidative phosphorylation and of consequence to the availability of ATP 
and ADP (Wallimann et  al. 1998; Dolder et  al. 2003). It remains to be formally 
demonstrated whether the MPT-modulatory activity of CKMT1 originates from its 
physical interaction with the PTPC components or its catalytic activity.

HKs catalyze the rate-limiting step of glycolysis, converting glucose into glu-
cose-6-phosphate in an ATP-dependent manner (Wilson 2003). Both HK1 and HK2 
interact with VDAC isoforms (Pastorino and Hoek 2008). These interactions are 
associated with an optimal flux through glycolysis and with major cytoprotective 
effects (Pastorino and Hoek 2003).

Conversely, PKCε and GSK3β exert MPT-modulatory functions by phosphory-
lating core PTPC components (Pastorino et al. 2005; Baines et al. 2003).

PKCε has been reported to phosphorylate VDAC1, promoting HK2 binding and 
consequent PTPC inhibition (Baines et al. 2003).

Activation of GSK3β has been reported to disrupt the binding of HK2 to mitochon-
dria by phosphorylating VDAC1, resulting in an enhancement of chemotherapy-
induced MPT-related cytotoxicity (Pastorino et al. 2005). Moreover, the activation of 
GSK3β has also been linked to the MPT-triggering phosphorylation of CyPD 
(Chiara et al. 2012). However, inactivation of GSK3β caused by phosphorylation on 
Ser9 has been shown to inhibit the PTPC by physically disrupting the ANT1/CyPD 
interaction (Nishihara et al. 2007). In addition, the activation of several upstream 
signal transducers, such as AKT1, mammalian target of rapamycin (mTOR), protein 
kinase A and protein kinase cGMP-dependent type I (PRKG1), has been reported to 
converge with the inactivation of GSK3β, mediating MPT-inhibitory effects (Juhaszova 
et al. 2004; Takuma et al. 2001; Pediaditakis et al. 2010).

Interestingly, multiple components of the MOMP-regulatory machinery have 
been shown to physically and functionally interact with core components of the 
PTPC, suggesting a tight relationship between the two RCD processes, including 
mutually regulatory crosstalk.

For instance, BCL-2 and BCL-2-like 1 (BCL-2L1, best known as BCL-XL) have 
been shown to inhibit MPT by regulating the open state of VDAC1 (Shimizu et al. 
1999; Vander Heiden et al. 1999), but the MPT-regulating activity of anti-apoptotic 
BCL-2 family members remains questionable.

Instead, BAX, BAK1 and BCL-2-like 11 (BCL-2L11, a BH3-only protein best 
known as BID) reportedly promote MPT-driven apoptosis by interacting with 
ANT1 and/or VDAC1 (Marzo et  al. 1998; Zamzami et  al. 2000; Narita et  al. 
1998). Similarly, BCL-2-associated agonist of cell death (BAD, another BH3-
only protein) can trigger a VDAC1-dependent, BCL-XL-responsive mechanism 
of the MPT.  Indeed, the MPT appears to result from BAD-dependent displace-
ment of BCL-XL from VDAC1 rather than from a physical BAD/VDAC1 interac-
tion (Roy et al. 2009).

Furthermore, in 2012, a pool of p53 localized to the mitochondrial matrix was 
shown to participate in the MPT; in response to oxidative stress, p53 accumulated in 
the mitochondrial matrix and triggered PTPC opening and necrosis through a physical 
interaction with CyPD (Vaseva et al. 2012).
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3  Pathological Relevance

Throughout the last two decades, several studies have implicated the MPT as a 
major etiological determinant in a wide variety of acute and chronic disorders 
characterized by an unwarranted loss of postmitotic cells. These conditions include 
ischemia/reperfusion injury, cancer and neurodegenerative disorders (in Fig.  2 a 
schematic summary of involvement of MPT in pathologies is reported).
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3.1  Ischemia/Reperfusion Injury

In 2012, the World Health Organization estimated 7.4 million deaths from coronary 
heart diseases (CHDs) worldwide, particularly in low- and middle-income coun-
tries. Accounting for nearly 13% of all deaths globally, CHDs have since been in the 
spotlight of cardiovascular research. Although the risk factors that promote CHDs 
have been identified (Akhabue et al. 2014), not all players involved in this pathology 
are well characterized. Generally, the pathophysiological effects of CHD are imput-
able to the debilitating consequences of coronary occlusions, followed by additional 
damage due to reperfusion, which as a whole, is known as ischemia- reperfusion 
injury (Kawajiri et al. 2011; Araszkiewicz et al. 2013; Frank et al. 2012).

In cardiomyocytes, the deprivation of oxygen following myocardial infarction 
(MI) results in a mitochondrial oxidative phosphorylation blockade, leading to a 
reduction in available ATP, which is indispensable for cellular energy metabolism 
(Hausenloy and Yellon 2013). In this situation, cellular metabolism is forced to 
switch to anaerobic glycolysis to recover the ATP levels, causing accumulation of 
lactate and hydrogen ions, which in turn leads to intracellular acidosis. The latter 
increases the intracellular Na+ concentration through the Na+/H+-exchanger, which 
extrudes protons, to restore pH, in exchange for Na+ (Avkiran and Marber 2002). 
Na+ overload is exacerbated by the ceased activity of Na+/K+ ATPase due to the 
reduced ATP availability, while the reverse mode activity of the sarcolemmal Na+/
Ca2+ exchanger induces intracellular Ca2+ overload (Piper et  al. 2003). The 
intracellular accumulation of Ca2+ and Na+ ions and protons H+, followed by losses 
of K+ and Mg2+ ions, results in intracellular edema, cell swelling and disruption of 
cellular membranes (Haunstetter and Izumo 1998; Moe and Marin-Garcia 2016). In 
prolonged ischemia and in response to an increase in the Ca2+ ion concentration, 
proteases (such as calpains) are activated and contribute to myocardial ischemic 
injury by degrading myofibrillar proteins and regulatory enzymes; this ultimately 
results in cardiac contractile dysfunction (Neuhof and Neuhof 2014).

According to the current knowledge, the major contributing actors of the lethal 
reperfusion injury are oxidative stress and increased Ca2+ overload (Piper et  al. 
2003), which are also the best characterized MPT inducers (Morciano et al. 2015).

Oxidative stress, determined by the reoxygenation of the ischemic heart, reduces 
the bioavailability of nitric oxide (NO), which is indispensable for inhibiting neu-
trophil accumulation and inactivating superoxide radicals (Granger and Kvietys 
2015; Kvietys and Granger 2012). Moreover, reduced levels of nitric oxide diminish 
myocardial blood flow reperfusion through the coronary circulation. The oxygen 
burst at the reperfusion time stimulates xanthine oxidase- and NADPH oxidase- 
dependent reactive oxygen species (ROS) formation. Intracellular Ca2+ overload, 
initiated during ischemia, is exacerbated at the time of reperfusion due to the oxida-
tive stress-mediated impairment of the sarcoplasmic reticulum and damage to the 
plasma membrane (Hausenloy and Yellon 2013). In addition, the recovery of oxy-
gen levels following the reperfusion re-energizes the mitochondria, enhancing their 
ability to accumulate Ca2+ ions (Lemasters 1999; Giorgi et al. 2012). Upon reperfusion, 
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the rapid restoration of intracellular pH, favored by the reactivation of the Na+-H+ 
exchanger and the consequent washout of lactic acid, stimulates the opening of the 
PTPC. As demonstrated in 1995 by Griffiths and Halestrap (1995), despite the pres-
ence of pro-opening factors (such as Ca2+, inorganic phosphate, oxidative stress and 
ADP), the PTPC remains closed during ischemia due to low pH levels (<7.0), since 
H+ inhibits Ca2+ binding to the PTPC trigger site (Lemasters et al. 1996). At the 
reperfusion time, the opened PTPC can be permeated by protons and any molecule 
less than 1.5 kDa. This event favors mitochondrial membrane potential dissipation, 
uncoupling oxidative phosphorylation and ATP depletion, whose generation is also 
prevented by reversal of the ATPase (Halestrap and Richardson 2015). In this way, 
energy metabolism is impaired, leading to further intensification of Ca2+ deregula-
tion and PTPC opening.

In the last few decades, the PTPC has emerged as a promising therapeutic target. 
In 2002, Hausenloy et al. confirmed PTPC opening at the onset of reperfusion and 
demonstrated that exclusive administration of CsA at the onset of reperfusion could 
limit the infarct size (Hausenloy et al. 2002). One year later, using the immunosup-
pressant sanglifehrin-A, it was shown that the mPTP-opening inhibition was effec-
tive in limiting the infarct size in isolated perfused rat hearts if performed in the first 
few minutes of reperfusion (Hausenloy et  al. 2003). Long-term cardioprotective 
effects of PTPC inhibition were shown in a study by Gomez et al., in which the 
PTPC inhibitor Debio-025, a CsA analog, was administered to mice that underwent 
IRI. They have demonstrated that inhibition of the PTPC at the reperfusion time 
improves functional recovery and mortality in mice at 30 days (Gomez et al. 2007). 
In 2014, a clinical study, conducted in patients undergoing aortic valve surgery, 
showed that cyclosporine administration at the time of reperfusion protects against 
reperfusion injury by reducing the levels of cardiac troponin I (Chiari et al. 2014).

Moreover, ischemia induces the release of cell membrane receptor ligands, such 
as adenosine, generated by the breakdown of ATP (Leung et al. 2014) and bradykinin, 
which induces production of ROS and NO (Sharma et al. 2015). Subsequently, the 
activation of a set of kinases known as RISKs (reperfusion injury salvage kinases), 
including Akt, Erk1/2, PKG, PKC-ε and p70s6K, is triggered. By activating the Akt/
eNOS pathway, ischemic preconditioning results in S-nitrosylation of multiple 
mitochondrial proteins; S-nitrosylation is a modification that is thought to protect 
sensitive sites from subsequent ROS-induced oxidation (Sun et  al. 2015). These 
proteins include CypD, which can be nitrosylated at cysteines 103, 156 and 203 
(Gutierrez-Aguilar and Baines 2015). The RIS kinases deliver an inactivating 
phosphorylation onto GSK3β, which is constitutively active and phosphorylates, 
among other substrates, CyPD, favoring its interaction with the PTPC (Rasola et al. 
2010). A cardioprotective role is attributed to hydrogen sulfide (H2S), which can 
function through the Akt/GSK3β axis (Andreadou et al. 2015). In this case, ischemia 
causes a decrease in endogenous H2S production, which can be antagonized by 
preconditioning protocols. Recently, mitochondrial calpain was proposed to con-
tribute to the onset of the MPT after IRI, following its activation by a matrix Ca2+ 
concentration increase (Shintani-Ishida and Yoshida 2015).
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Finally, another regulatory pathway has been shown to involve CyPD acetylation/
deacetylation (Bochaton et al. 2015). Deacetylation of Lys166 of CyPD by mitochon-
drial deacetylase SIRT3 (Hafner et al. 2010) favors CyPD interaction with PTPC com-
ponents and thus, the MPT. In addition, SIRT3 downregulation sensitizes mitochondria 
to PTPC opening, and SIRT3-mediated deacetylation of CyPD is reportedly enhanced 
downstream of postconditioning (Bochaton et al. 2015). Interestingly, the knockdown 
of SIRT4, another mitochondrial isoform that lacks deacetylase activity but has ADP 
ribosyl-transferase activity, has been reported to have the opposite effect, increasing 
resistance to PTPC induction (Verma et al. 2013).

3.2  Cancer

Apoptosis is recognized as a hallmark of cancer, and loss of its control is required 
for the development and progression of the pathology (Hanahan and Weinberg 
2011). Considering the role of the MPT in cell death induction, it is logical to 
speculate that alterations to the PTPC exist in cancer.

Experimental data that corroborate this hypothesis have been collected and are 
discussed below.

As previously mentioned, the best-known MPT inducer is intra-mitochondrial 
calcium, which is provided to mitochondria by the endoplasmic reticulum through 
MAMs (Marchi et al. 2014; Patergnani et al. 2011; Giorgi et al. 2015c).

Cancer develops several mechanisms to inhibit toxic Ca2+ signaling. Two onco-
suppressors, PML (Bernardi and Pandolfi 2014) and PTEN (Pulido et al. 2014), in 
cooperation with protein phosphatase 2A, sustain the transfer between the ER and 
mitochondria through the mitochondrial Ca2+ uniporter (MCU) complex by regulat-
ing the phosphorylation state of the channel responsible for Ca2+ release, the inositol-
3-phosphate receptor (IP3R) (Bononi et  al. 2013; Giorgi et  al. 2010). A different 
mechanism, but a similar result, occurs with the loss (or mutation) of the master 
oncosuppressor p53. Indeed, p53 stabilization leads to stimulation of sarco/endoplas-
mic reticulum Ca2+-ATPase (SERCA) and maintains elevated levels of Ca2+ in the 
endoplasmic reticulum ([Ca2+]er). Loss of p53, PML and PTEN (as well as several of 
their oncogenic mutations) leads to a decrease in [Ca2+]er resulting in reduced signal-
ing to the mitochondria (Giorgi et al. 2015a, b). In contrast, oncogenes can display 
the opposite effect. Indeed, tumor progression can be sustained by the accumulation 
of a series of changes in the Ca2+ regulatory machinery that decrease the cytotoxic 
Ca2+ signal. An in vitro mimicking of tumor transformation induced by activation of 
H-RAS is accompanied by a progressive reduction in the amount of intracellular 
Ca2+ that is transferable to the mitochondria. This effect can be counteracted by a 
controlled increase in the extracellular Ca2+ level that causes an increase in the 
intracellular Ca2+ level and impedes H-RAS-induced transformation (Rimessi et al. 
2015). For example, Bcl-2 reduces the Ca2+ content in the ER (Pinton et al. 2000), 
and the mitogenic kinase AKT strongly inhibits the IP3R.
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Interestingly, AKT and PTEN are both members of the PI3K pathway, one the 
most studied survival signaling pathways, which plays a critical role in resistance 
to anticancer therapies (Slomovitz and Coleman 2012; Fresno Vara et  al. 2004; 
Wolin 2013).

AKT can also phosphorylate and consequently inhibit GSK3β. This kinase has a 
significant stimulatory effect on the PTPC and can act as a tumor suppressor in 
several tumors. Indeed, as already mentioned, its inactivation by AKT promotes the 
association between HK2 and VDAC, causing inhibition of PTPC and an increase 
in cell survival (Juhaszova et  al. 2004). In addition, the WNT, PKC and ERK 
pathways regulate GSK3β phosphorylation, which potentially connects the MPT to 
signals involved with growth factors, G protein-coupled receptor ligands and the 
extracellular matrix (Graber et al. 1999; Kang et al. 2007).

These data suggest that kinase cascades that are significantly activated in cancers 
can keep the PTPC closed, especially when acting on HK2.

Apart from their phosphorylation statuses, different PTPC components are dif-
ferentially expressed in cancer cell lines and tumor models (Brenner and Grimm 
2006; Fulda et  al. 2010). VDAC isoforms are significantly higher in malignant 
tumor cells (Shinohara et  al. 2000); ANT-2 is upregulated in renal tumors and 
transformed hepatocytes (Faure Vigny et al. 1996). HK2 is upregulated in multiple 
tumors (Shinohara et  al. 1991; Rempel et  al. 1996; Azoulay-Zohar et  al. 2004; 
Gudnason et al. 1984), and there is a positive correlation between tumorigenesis and 
the expression level of TSPO (Beinlich et  al. 2000; Maaser et  al. 2001). Such 
alterations in gene expression would lead to the erroneous conclusion that the MPT 
should be favored in tumors. Nonetheless, tumor cells also contain alterations to the 
expression levels of the BCL-2 family members that keep the MPT probability low. 
Indeed, antiapoptotic members, such as BCL-XL and Mcl-1, are overexpressed in 
cancer (Quinn et al. 2011). BCL-XL has been shown to negatively regulate PTPC 
opening by directly interacting with VDAC (Arbel et al. 2012) from the cytoplasmic 
side, while a mitochondrial-matrix-located BCL-XL interacts with the β-subunit of 
F1FO ATP synthase inhibiting PTPC opening (Beinlich et al. 2000). Additionally, 
Mcl-1 plays a role in inhibiting the MPT (Thomas et  al. 2013) even though the 
mechanism is not clearly elucidated. Furthermore, it is proposed that antiapoptotic 
members BCL-2, BCL-XL and Mcl-1 interfere with the proapoptotic interactions 
formed by BAX and BAK, which are known positive regulators of the MPT (Narita 
et al. 1998; Brenner et al. 2000; Karch et al. 2013).

Upregulation in HK2 expression can also be linked to the Warburg effect, a well- 
known metabolic hallmark of cancer. This term (“Warburg effect”) usually refers to 
the atypical increase in glucose uptake and lactic fermentation observed in tumor 
masses regardless of the aerobic environment in which they are observed (Warburg 
et al. 1927; Boland et al. 2013). Glucose is converted to pyruvate, which is further 
reduced to lactate and completes the lactic fermentation process. The findings 
reported by Warburg (and confirmed by other groups) result in two main 
consequences for the MTP: (1) an increase in glucose uptake that allows for the 
continued synthesis of ATP, which impedes the depletion of adenine nucleotides 
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and Pi accumulation and (2) the accumulation of lactate and lowering of pH as 
described for the MPT inhibitor. This suggests that the Warburg effect may result in 
the accumulation of PTPC inhibitors.

Another hypothesis, which is poorly investigated, is that the Warburg effect 
would simply make the MPT inefficient toward stressing cells sufficiently to induce 
cell death. Indeed, the large dependence on glycolytic metabolism would allow cells 
to continue surviving even with the loss of the mitochondrial functions induced by 
the MPT (at least to some extent). The observation that osteosarcoma cells with 
overt Warburg effects also display signs of the MPT supports this hypothesis.

The Warburg effect causes alterations in mitochondrial redox potential, ulti-
mately changing ROS generation (Locasale and Cantley 2011). Indeed, ROS, the 
second most important MPT inducer, appears at higher levels in tumor cells, where 
they promote several other hallmarks of cancer, such as proliferation, invasion and 
metastasis (Gupta et al. 2012; Yang et al. 2013). However, ROS also reduces the 
PTPC threshold for Ca2+ and should increase tumor cell sensitivity to MPT induction, 
leading to an apparent paradox.

Nonetheless, several cancer cell types display higher levels of antioxidants, 
which could inhibit ROS toxicity. Specifically, increased levels of superoxide 
dismutase (SOD2) and thioredoxin reductase 2 (TRX-2) were observed in 
mitochondria from cancer samples (Dvorakova et  al. 2002; Biaglow and Miller 
2005; Pani et al. 2004). These data, together with the impaired Ca2+ signals already 
discussed, may allow the ROS level to increase without alerting the cell’s regulatory 
mechanisms. Evading these regulatory mechanisms would then allow the tumor cell 
to undergo the cancer-promoting changes induced by a high ROS level.

Finally, a chaperone network could be an additional adaption mechanism for 
allowing cancer cells to escape MPT induction. Indeed, the PTPC relies on the 
activity of a well-known chaperone, CyPD, as its inhibition by CsA dramatically 
reduces the probability of PTPC opening.

3.3  Neurodegenerative Diseases

Mitochondria participate in various fundamental cellular processes, including energy 
production, regulation of cell death, and metabolism. There is no protagonist of life 
whose cellular fate is so strongly dependent on mitochondrial functions as the neuronal 
cell. The involvement of mitochondrial dysfunctions in neuronal damage associated 
with neurodegenerative diseases and brain damage has become increasingly relevant.

As already mentioned, the MPT is activated in response to pro-apoptotic stimuli, 
such as ROS and Ca2+ overload, that are common important pathological features of 
multiple diseases of the nervous central system (Martin et al. 2009). Despite the origin 
of its discovery (Crofts and Chappell 1965), the PTPC function in neurodegenerative 
diseases was uncovered rather recently (Du et al. 2008; Gautier et al. 2012).

Here, we describe neurodegenerative diseases that are characterized by dysfunctions 
in Ca2+ and ROS homeostasis that induce PTPC.
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Alzheimer’s disease (AD) is the most common form of dementia related to aging, 
and it caused by chronic neurodegenerative processes. AD is characterized by the 
accumulation and deposition of amyloid plaques formed by the β-amyloid peptide 
(Aβ), a cleavage product of the amyloid precursor protein (Haass and Selkoe 2007), 
and by phosphorylation of the tau protein in the brain (Rao et al. 2014). It has been 
shown that Aβ oligomers alter intracellular Ca2+ homeostasis, accelerating global 
neuropathological cascades (Demuro et  al. 2010). Moreover, Aβ can be imported 
into the mitochondria (Hansson Petersen et al. 2008), where it promotes PTPC open-
ing upon binding to CyPD. Consistent with this notion, neurons derived from CyPD 
knockout mice are protected from cell death induced by amyloid-dependent PTP 
opening, and the CyPD deficiency is associated with alleviation of neuronal cell 
death and improvements in cognitive function in AD mice (Du et  al. 2008). 
Interestingly, Elkamhawy et al. reported that CyPD selective inhibitors, which are 
novel quinazoline-urea analogs, show protective effects in neuronal cells, blocking 
amyloid-dependent PTP opening (Elkamhawy et al. 2014). Furthermore, the selective 
loss of the oligomycin sensitivity conferring protein (OSCP) subunit of the F1FO-ATP 
synthase and the physical interaction of OSCP with Aβ constitute the major OSCP 
alterations in the brains of AD patients and the AD mouse model. Loss of OSCP 
leads to a reduction in ATP production, which increases oxidative stress and activa-
tion of MPT, whereas its restoration reportedly ameliorates Aβ-mediated mouse and 
human neuronal mitochondrial impairments, opening up new therapeutic implica-
tions for AD based on the stabilization of the OSCP protein (Beck et al. 2016). Other 
critical components of the PTPC appear to have a role in AD development. ANT can 
bind directly to Aβ, reducing the ATP/ADP exchange rate and energy metabolism in 
AD (Singh et al. 2009). VDAC can form complexes with Aβ and phosphorylated tau 
in AD mouse models, although its involvement in PTPC formation is unclear 
(Crompton et al. 1998; Zheng et al. 2004; Baines et al. 2007).

The second most common disease among the neurodegenerative pathologies and 
the most frequent movement disorder is Parkinson’s disease (PD) (Bernardi et al. 
2015). It is caused by the death of dopaminergic neurons in the mesencephalic 
region known as the “substantia nigra pars compacta”, which is characterized by the 
presence of α-synuclein and aggregates of protein included in neuronal cells known 
as Lewy bodies (Rasheed et al. 2017). Dopaminergic neurons have a peculiar mech-
anism for controlling intracellular Ca2+ fluctuations and the Ca2+ storage capacity of 
their mitochondria that involves an autonomous pace-making activity that relies on 
voltage-dependent L-type Ca2+ channels that modulate the release of the neurotrans-
mitter dopamine (Winklhofer and Haass 2010). Accordingly, these neurons are par-
ticularly sensitive to mitochondrial Ca2+ perturbations, and it has been proposed that 
the increased sensitization of PTPC opening is a major cause of neurodegeneration 
in PD patients and a mouse model of the pathology (Luth et al. 2014; Martin et al. 
2014). Furthermore, an altered mitochondrial Ca2+ storage capacity, impaired 
respiratory complex I, and altered mitophagy, which exacerbate the sensitization 
of the MPT, are observed when the complex I activity is suppressed as in the case of 
patients with PD (Beal 2000; Greenamyre et al. 2001; Seaton et al. 1998) and when the 
PINK1 Ser/Thr kinase is inactivated by RNA interference- mediated downregulation 
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or by PINK-1 knockout in mice (Rasola and Bernardi 2011; Valente et al. 2004; 
Kawajiri et al. 2011). Moreover, there is a reduced capacity for this mechanism to 
buffer intracellular ROS in dopaminergic neurons, which could induce an increase 
in the PTPC activity (Brundin et al. 2008). Interestingly, a reduction in the degen-
eration of dopaminergic neurons has been observed in patients treated with dopa-
mine agonists rather than with L-dopa. This effect could be due to a neuroprotective 
effect of the direct inhibition of the MPT, as demonstrated after treatment with 
pramipexole, ropinirole and rasagiline in vitro (Sayeed et al. 2006; Youdim et al. 
2005; Schonfeld et al. 2013).

Huntington’s disease (Forte et al. 2007) is caused by autosomal dominant muta-
tions that lead to translation of an expanded polyglutamine tract in the gene encod-
ing the huntingtin (Htt) protein. Patients display progressive uncontrolled 
movements, psychiatric disturbances, and dementia; this disease is invariably lethal 
(Landles and Bates 2004). Choo et al. demonstrated that mitochondrial dysfunc-
tions, caused by pathogenic Htt mutations, depend on PTPC opening after Ca2+ 
overload in isolated mitochondria from an HD mouse model (Choo et al. 2004), and 
these effects are inhibited by the addition of CsA and ADP (Milakovic et al. 2006). 
Therefore, neurons with the mutated Htt protein reportedly show an altered Ca2+ 
homeostasis, mtDNA damage and mitochondrial fragmentation that could trigger 
the MPT (Quintanilla et al. 2017). Interestingly, a significant association of Htt with 
the mitochondria in synaptic extracts (Hamilton et al. 2015) has been observed; this 
may indicate a possible interaction with several elements of the PTPC that affects 
mitochondrial function.

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease character-
ized by motor neuron degeneration, especially in the brain and spinal cord, which 
rapidly leads to the loss of voluntary muscle control and subsequent paralysis and 
mortality (Lezi and Swerdlow 2012). Some forms of ALS are inherited and caused 
by mutations in the superoxide dismutase-1 (SOD1) gene (Martin et  al. 2009). 
Transgenic mice expressing the mutant SOD1 were shown to display mitochondrial 
alterations, including swollen megamitochondria with cristae remodeling and 
matrix vacuolization, respiratory chain inhibition, a reduced mitochondrial Ca2+ 
buffering capacity and fragmentation, and an elevated generation of ROS (Leal and 
Gomes 2015; Kawamata and Manfredi 2010). Interestingly, regulatory components 
of the PTPC, such as ANT and CyPD, were found to be highly expressed in the 
same mouse model, indicating that the MPT might be the triggering cause of 
neuronal cell death (Martin et al. 2009).

Multiple sclerosis is the most common chronic inflammatory disease of the cen-
tral nervous system, where the myelin sheath of neurons is destroyed by endogenous 
myelin-associated antigens, such as myelin oligodendrocyte glycoprotein, proteoli-
poprotein, and myelin basic protein (Stys et al. 2012). During an active inflammatory 
attack in MS, large quantities of glutamate, an essential excitatory neurotransmitter, 
are produced by activated immune cells, such as macrophages and microglia. 
Overstimulation of glutamate receptors leads to mitochondrial Ca2+ overload and a 
consequent bioenergetics dysfunction and MPT stimulation (Su et  al. 2009). 
Experimental autoimmune encephalomyelitis is widely used as an animal model of 
multiple sclerosis. For example, decreased levels of axonal damage and a marked 

C. Morganti et al.



63

protection from the inflammatory response have been observed in CyPD knockout 
mice compared to wild-type mice (Forte et al. 2007). Moreover, to highlight the cen-
tral role of the PTPC in neurodegeneration, experimental autoimmune encephalomy-
elitis was performed in p66Shc-null mice, where ROS-induced PTP opening was 
abrogated (Savino et al. 2013).

Although neurodegenerative diseases constitute a large portion of the research 
focus, it is also important to underline the role of mitochondria in neuronal 
degeneration and brain damage caused by acute and chronic abuse of alcohol, which 
is a serious public health problem. Recently, an in vitro study by Lamarche and 
co-workers (Lamarche et al. 2013) revealed a close correlation between stimulation 
of the PTPC and neuronal damage induced by chronic administration of ethanol. 
Moreover, CsA is reportedly able to attenuate ethanol withdrawal-induced cell 
death in the HT22 cultured hippocampal cell line (Jung et al. 2009).

4  Conclusions

Along with the recognition that the MPT has a critical role in multiple pathophysi-
ological scenarios, there has been strong interest in the therapeutic potential of the 
MPT.  MPT pharmacological inhibitors could be used to prevent the cell death 
caused by PTPC opening. Conversely, pharmacological activators of the MPT could 
be used to selectively kill neoplastic cells based on their intrinsically elevated levels 
of stress. To develop therapeutic drugs, it will be fundamental to understand the 
molecular composition of the PTPC. The recent key discoveries surrounding the 
composition of the PTPC, particularly the F1FO ATP synthase, have opened new 
perspectives into the molecular definition of its role in pathophysiology and will 
rapidly enhance the understanding of pore structure and function, which will bring 
about the design and validation of PTP-active compounds to treat cancer and car-
diac and degenerative diseases.
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