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Abstract  Despite the fact that majority of studies done using different compounds 
with antioxidant properties showing pivotal effect on oxidative phosphorylation or 
glycolytic ATP production, it is still difficult to discuss efficient therapeutic solu-
tions for patients affected by mitochondrial diseases or mitochondrial dysfunction-
associated disorders. Since most of the mitochondrial disorders are manifested in 
tissues or organs that demand high-energy, many experimental studies have 
described that the pivotal effect of the tested compounds comes from the use of the 
skin fibroblasts from patients. In this chapter, we have gathered information about 
these studies and describe the effect of such treatment on mitochondrial function 
and the attenuation of oxidative stress in patients’ fibroblasts.
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1  �Introduction

Mitochondria perform central functions in cells, such as buffering the cytosolic cal-
cium concentration, regulating apoptosis through the mitochondrial permeability 
transition pore (mPTP) (Bonora et  al. 2015; Ferrari et  al. 2017; Morciano et  al. 
2015; Bonora et al. 2017), generating reactive oxygen species (ROS) (Morató et al. 
2013) and many others. However, their most important role is the production of ATP 
(Patergnani et al. 2014). Human fibroblasts (e.g., from a skin biopsy) are a valuable 
and reliable source of biological material for the study of a wide range of diseases 
(with one limitation—mitochondrial defects must be expressed in fibroblasts), espe-
cially those caused by DNA mutations and in instances where it is not always pos-
sible to obtain fresh samples for research, such as neurodegenerative disorders 
(Hirashima et al. 1996). Moreover, the collection of skin biopsies is a much less 
invasive procedure compared to muscle or liver biopsies. Patients’ skin fibroblasts 
can be used directly or can be used to generate transmitochondrial cybrids or create 
induced pluripotent stem cells (iPSCs) (Saada 2014). Based on the available litera-
ture, fibroblasts obtained from patients suffering from mitochondrial disorders seem 
to be a good model not only to confirm diagnosis or find the cause of the metabolic 
defect but also to prove the effectiveness of potential therapies. Different classes of 
compounds and experimental approaches have been used to improve the mitochon-
drial function or to decrease mitochondrial dysfunction-related oxidative stress in 
patients’ fibroblasts; we describe some of them in this chapter.

2  �Therapeutic Approaches

Supplementation of patients’ fibroblasts with compounds that show antioxidant 
properties should result in the attenuation of mitochondrial respiratory chain dys-
function caused by the intracellular oxidative stress. Very often, oxidative stress is 
accompanied by mitochondrial dysfunction and the oxidative phosphorylation 
(OXPHOS) pathology, which usually manifests as an increased level of ROS, as well 
as the presence of oxidatively damaged proteins, lipid peroxides and DNA (Giorgi C 
et al. 2010a). Several compounds have been tested in patients’ fibroblasts to investi-
gate their positive or negative impact on mitochondrial metabolism and the ROS 
level. Among them are vitamins, cofactors and classical antioxidants that can enhance 
the cellular antioxidant capacity to remove ROS as well as improve mitochondrial 
function. In this group of compounds, we can find vitamin A, B vitamins, including 
thiamine (B1), riboflavin (B2) and nicotinamide (B3), riboflavin, folic acid and many 
others. Thanks to the targeting module, a special class of artificial antioxidants can 
be specifically targeted to the mitochondria. However, it is necessary to mention that 
mitochondrially-targeted antioxidants, such as ubiquinone (MitoQ) and tocopherol 
(MitoE), are not useful in all cases of mitochondrial dysfunction. This limitation 
comes from the fact that these compounds accumulate in the mitochondria due to the 
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high mitochondrial membrane potential. However, in cases of many mitochondrial 
disorders, decreased mitochondrial membrane potential has been observed. This 
makes it impossible for the mitochondria to accumulate mitochondria-targeted anti-
oxidants, as is observed in “healthy” fibroblasts (Smith and Murphy 2010). In cases 
of energy production perturbations, another approach to ameliorate mitochondrial 
metabolism can be the induction of mitochondrial biogenesis. In animal models of 
X-linked adrenoleukodystrophy, pioglitazone, a PPAR agonist, has been found to 
increase mitochondrial mass, decrease DNA oxidative damage, decrease the level of 
carbonylated proteins and improve bioenergetics parameters (Morató et al. 2013). 
Similarly, another PPAR agonist, bezafibrate, could improve mitochondrial parame-
ters in the fibroblasts of patients with a complex I deficiency (caused by mutations in 
the NDUFS2 gene), however, there was no effect on the fibroblasts of patients with a 
complex I deficiency, due to mutated complex I assembly factor C20ORF7 
(Golubitzky et al. 2011). In the same studies, Golubitzky et al. (2011) has shown that 
5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), which is an activator of 
adenosine monophosphate kinase (AMPK), significantly decreased oxidative stress 
and increased mitochondrial biogenesis and ATP production in fibroblasts from 
patients with mutations in the genes encoding NDUFS2 complex I subunit, 
NDUFA12L and NDUFAF4 complex I assembly factors. Interestingly, such treat-
ment was ineffective in patients’ fibroblasts that harbored a mutation in the gene 
encoding the NDUFS4 subunit of complex I (Golubitzky et al. 2011). Another strat-
egy to abrogate mitochondrial defects is pharmacologically induced metabolic repro-
graming. The involvement of AMPK, Sirt1 and Sirt3 activation in the metabolic 
adaptation of human cells harboring mitochondrial DNA mutations induced by res-
veratrol supplementation has been reviewed by Wu et al. (2014). Moreover, resvera-
trol can ameliorate the aging process in human primary keratinocytes by preventing 
dysfunctions in proliferation and decreasing senescence (dependent on AMPK, 
SIRT1 and FOXO3) (Ido et  al. 2015). In addition, this polyphenolic flavonoid 
improved the phenotypical condition given by Graves’ Orbitopathy disease in pri-
mary cultured orbital fibroblasts of affected patients, highlighting its potential use in 
a wide range of disorders (Kim et al. 2015). The positive effect of resveratrol on the 
elevated oxidative stress of patients’ fibroblast is mostly mediated by modulation of 
antioxidant enzyme levels, including the superoxide dismutases, thioredoxin, gluta-
thione peroxidase-1, heme oxygenase-1 and catalase. It has also been shown that 
resveratrol treatment was responsible for the increased oxygen consumption and 
decreased lactate production in moderately OXPHOS-deficient fibroblasts. Moreover, 
resveratrol has a positive effect on the mitochondrial respiratory capacities in parkin-
mutated fibroblasts, which is possibly due to the up-regulation of key regulatory 
enzymes involved in cellular and mitochondrial metabolism (Ferretta et al. 2014). On 
the other hand, resveratrol was shown to have harmful effects on patients’ fibroblasts 
(De Paepe et al. 2014; Golubitzky et al. 2011; Lopes Costa et al. 2014). So, the posi-
tive or negative effect of resveratrol treatment depends on the type of OXPHOS 
defect. In general, as mentioned above, the compounds act on multiple sites and 
modulate mitochondrial metabolism, as well as influence the status of intracellular 
oxidative stress. A recent review by Koopman et  al. provides an overview of the 
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small molecules that are currently being developed for treatment of mitochondrial 
disease (Koopman et al. 2016). Another experimental approach that can be used to 
improve cellular metabolism in patients’ fibroblasts relies on the influence of pro-
teins involved in calcium homeostasis. This issue will be discussed below.

2.1  �Patients’ Fibroblasts: Trials for Rescue of Metabolic 
Defects by Modulation of Calcium Homeostasis

The endoplasmic reticulum (ER) serves as the first calcium store in the cell. Calcium 
(Ca2+) release occurs through inositol 1,4,5-trisphosphate receptor (IP3R) channels 
in the cytosol and thus reaches the mitochondria and other organelles (Sbano et al. 
2017). Calcium is essential for cellular bioenergetics regulation (Kaufman and 
Malhotra 2014), autophagy (Cárdenas and Foskett 2012; Decuypere et al. 2013), 
ROS production (Singh et al. 2005) and cell death (Danese et al. 2017; Giorgi et al. 
2015a, 2015b, 2010; Marchi et al. 2017). Given its crucial involvement in all these 
physiological contexts, the modulation of calcium homeostasis with pharmacologi-
cal (or genetic) approaches could be useful to amend the onset of a pathological 
state. Autophagy is an important response to energetic defects, as well as the 
lysosomal-dependent elimination of damaged organelles (Marchi et  al. 2017). In 
addition, mitochondrial Ca2+ signaling is closely related to the fine regulation of this 
process (Patergnani et  al. 2013; Pinton et  al. 2004); thus, pharmacological (and 
genetic) calcium modulation could be used to regulate autophagy levels in those 
pathologies where cell bioenergetics properties are impaired. In a study by 
Granatiero et al., an important increase in the autophagic flux has been observed in 
fibroblasts carrying the mA13514G mutation of the MTND5 gene encoding ND5 
subunit of the mitochondrial Complex I (Granatiero et al. 2016). Due to a decrease 
in ER-mitochondria contact sites and defects in the mitochondrial calcium uniporter 
(MCU) complex, a perturbation of calcium homeostasis translated into reduced 
mitochondrial calcium uptake in m.A13514G cells and led to atypical MELAS and 
Leigh syndromes with a late onset and slow progression in patients carrying this 
mutation (Granatiero et al. 2016). A faster mitochondrial turnover and accelerated 
autophagy were associated with a milder syndrome phenotype. The authors have 
shown how the use of MCU activators, such as kaempferol (a plant-derived antioxi-
dant flavonoid) (Vay et al. 2007) and SB202190 (Düzgün et al. 2017), enhanced 
mitochondrial Ca2+ uptake and slowed down the autophagic flux in 13514A4G 
fibroblasts, giving a phenotype completely comparable to that of control cell lines. 
These MCU activators restored a normal bioenergetics condition but their prolonged 
treatment with these compounds decreased cell viability. Indeed, lowering mito-
chondrial Ca2+ could be a compensatory and pro-survival mechanism that allows for 
a less severe neurodegenerative syndrome. In complex I-deficient fibroblasts from 
patients carrying a homozygous missense mutation (G364A) in the nuclear NDUFS7 
gene, agonist-induced mitochondrial Ca2+ handling and the ensuing stimulation of 
mitochondrial ATP production are impaired (Visch et al. 2004). Alterations in ATP 
production were completely restored upon acute treatment with the CGP37157 
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compound (7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-
one—a mitochondrial Na+-Ca2+ exchanger inhibitor), which restored the bradykinin-
induced mitochondrial Ca2+ uptake. This relation can be explained simply by the 
fact that “repeated” agonist-induced mitochondrial Ca2+ uptake leads to an increase 
in mitochondrial ATP production (Jouaville et al. 1999) and CGP37157 by restoring 
the bradykinin-induced increase in mitochondrial calcium concentration. This was 
able to restore the bioenergetics state of the cell. These findings demonstrated that, 
although the OXPHOS machinery is composed of a defective complex I, modula-
tion of calcium homeostasis can improve mitochondrial ATP synthesis.

Pathological conditions that could benefit from calcium modulation are count-
less, although, in many cases, no pharmacological treatments have been conducted. 
An example derives from the triad of Autism Spectrum Disorder (ASD)—Fragile X 
Syndrome (FXS)—Tourette Syndrome (TS), where a perturbation in IP3-mediated 
Ca2+ signaling has been reported. Indeed, skin fibroblasts from patients with FXS 
and TS have significantly decreased Ca2+ response compared with control cell lines. 
This impaired signal is not due to decreased ER calcium content or a reduced 
expression of IP3R proteins, but to fewer sites of Ca2+ release and a general dysfunc-
tion of the IP3R channel gating (Schmunk et al. 2015, 2017).

Recently, it has been demonstrated that calcium imbalance, ER stress, unfolded 
protein response (UPR) and oxidative stress are consequences of skin exposure to 
UV radiations (Farrukh et al. 2014). Indeed, although mammalians own protective 
systems to overwhelm this damage starting from plasma membrane to the lipids, 
subcellular organelles and DNA, repeated exposures to UV lower the defenses of 
the human body. Additional help, such as ROS detoxification and the restoration of 
calcium homeostasis, may be required. It was shown that glycyrrhizic acid (GA) 
treatment significantly protects against Ca2+ perturbation by lowering ER stress and 
apoptosis in UV-B treated human skin fibroblasts (Farrukh et al. 2015).

In summary, the findings presented above have remarkable translational rele-
vance that supports the involvement and targeting of Ca2+ signaling (and oxidative 
stress) in cells directly derived from patients. These studies provide important infor-
mation about the use of fibroblasts from biopsy samples as a functional diagnostic 
tool and surrogate pharmacological trial.

3  �Possible Therapeutic Approaches Carried Out in 
Fibroblasts Derived from Patients with Different 
Mitochondrial and Metabolic Abnormalities, as well 
as Other Disorders Characterized by Oxidative Stress

Fibroblasts derived from patients suffering from mitochondrial disorders have been 
used repeatedly to investigate the effect of potential pharmacological compounds 
designed to improve the affected cellular bioenergetics as well as to decrease oxida-
tive stress in these cells. Below, we present examples of therapeutic trials performed 
with the use of patients’ fibroblasts with different abnormalities in the OXPHOS 
machinery.
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3.1  �NARP Patients’ Fibroblasts

NARP (Neuropathy, Ataxia and Retinitis Pigmentosa) and MILS (Maternally 
Inherited Leigh’s Syndrome) are mitochondrial disorders associated with mutations 
in the MTATP6 gene encoding subunit a of the mitochondrial ATP synthase. Typical 
m.T8993G mutations, which are responsible for NARP/MILS, are related to the 
transversion of thymine to guanine at mtDNA nucleotide 8993, which causes the 
conversion of a highly conserved leucine to arginine. The clinical phenotype associ-
ated with the m.T8993G mutation depends on the heteroplasmy level (White et al. 
1999). The NARP phenotype is considered when the mutation load is between 70 
and 90%. When it is higher, it may be responsible for fatal infantile encephalopathy 
MILS. Generally, mutation in the ATPase 6 gene, which encodes a subunit that is a 
part of the F1F0-ATPase c-ring, results in alterations to the mitochondrial ATP pro-
duction process. It has been found that mitochondrial ATP synthesis can be reduced 
by 50–70% in cells harboring 100% m.T8993G mutation load (Vazquez-Memije 
et al. 1996). Detailed characterization of NARP fibroblasts made by Lebiedzinska 
et al. showed an increased mitochondrial membrane potential, decreased activity of 
the mitochondrial respiratory chain, reduced NADH/NAD ratio, alterations of mito-
chondrial calcium homeostasis and an increased level of mitochondrial superoxide 
and oxidatively damaged proteins (Lebiedzinska et al. 2013). They found that inhi-
bition of p66Shc (an alternatively spliced isoform of the growth factor adaptor that 
belongs to the ShcA family) phosphorylation at Ser36 by hispidin (inhibitor of 
PKCβ) results in decreased mitochondrial superoxide anion production, which acts 
downstream of p66Shc activation and reduces the vicious cycle of ROS production 
in the studied NARP fibroblasts. Interestingly, in NARP fibroblasts, hispidin treat-
ment increased the level of carbonylated proteins (Lebiedzinska et al. 2013). The 
other work presented by Mattiazzi et  al. showed that mitochondrial dysfunction 
caused by m.T8993G mutation can be partially reverted by antioxidant treatment. 
To improve the oxygen consumption and ATP production in primary fibroblasts 
obtained from a patient harboring a 97% m.T8993G mutation load, 2.5 mM NAC 
was used (Mattiazzi et al. 2004). The studies of Wojewoda et al. showed that sele-
nite, an inorganic form of selenium, increased the level of antioxidant enzymes, 
which can explain the decreased level of ROS in NARP cybrids (Wojewoda et al. 
2011). Additionally, they found that selenite treated cells had a higher level of mito-
chondrial respiratory chain subunits, which resulted in higher intracellular ATP lev-
els. An interesting study has been performed by Sgarbi et al. discussing whether 
α-ketoglutarate and aspartate treatment can have a positive impact on the viability 
and ATP level of NARP/MILS patients’ fibroblasts carrying 2 distinct point muta-
tions, m.T8993G (with severe impact) and m.T8993C (with only mild impact on 
OXPHOS) (Sgarbi et  al. 2009). Interestingly, the protective effect of 
α-ketoglutarate/aspartate was observed only in fibroblasts harboring the m.T8993G 
mutation. The treatment had absolutely no effect on the viability of cells with 
mildly impaired ATP synthase (m.T8993C mutation). Nevertheless, the authors 
believe that α-ketoglutarate/aspartate dietary supplementation can be considered a 
potential pharmacological therapeutic approach (Sgarbi et al. 2009).
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3.2  �LHON Patients’ Fibroblasts

Leber Hereditary Optic Neuropathy (LHON) is a primary mtDNA disorder that 
initially causes a painless and acute unilateral loss of central vision among young 
adults and later manifests as total bilateral vision loss and blindness. Most of the 
mtDNA mutations responsible for LHON affect the mitochondrial complex I sub-
units. Practically, three point mutations, m.G3406A (in the MTND1 gene), 
m.G11778A (in the MTND4 gene) and m.T14484C (in the MTND6 gene), are 
responsible for approximately 90% of all LHON cases. Interestingly, among them, 
the mutation in the gene encoding the ND4 subunit gene is the most prevalent (60–
80%) cause of LHON. As a synthetic analog of CoQ10 in mitochondria, idebenone 
can act as an electron carrier in the respiratory chain, and it is considered a com-
pound with antioxidant properties. Interestingly, in contrast to CoQ10, idebenone 
participates in redox reactions outside the mitochondrial compartment (Haefeli 
et al. 2011). Idebenone in the cytoplasm is reduced by the NAD(P)H quinone oxi-
doreductase 1 (NQO1) and can be re-oxidized by complex III, which in turn enables 
bypass of the affected complex I (Haefeli et al. 2011). Additionally, in contrast to 
CoQ10, idebenone seems to stimulate complex II activity (Gueven et al. 2016). A 
positive effect of idebenone on fibroblasts derived from LHON patients was 
observed by Angebault et al. already several years ago (Angebault et al. 2011). They 
observed that lower activity of complex I in fibroblasts derived from LHON patients 
after incubation with 10  μM idebenone was increased by approximately 42%. 
However, idebenone treatment had variable effects on oxygen consumption, indi-
cating that there were not equal benefits from the idebenone treatment (Angebault 
et al. 2011). Recently, Yu-Wai-Man et al. also evaluated the therapeutic potential of 
idebenone and other quinone analogues in LHON patients’ fibroblasts (Yu-Wai-
Man et al. 2017). They found that idebenone treatment partially compensated for 
the deleterious effect of the m.G11778A mutation. Moreover, idebenone increased 
ATP production and reduced oxidative stress; however, this effect was observed in 
only a subgroup of studied patients’ fibroblasts. Other quinone analogues tested by 
this group, like CoQ1, CoQ10 and decylubiquinone, showed variable effects on 
oxygen consumption and ROS level (Yu-Wai-Man et al. 2017).

3.3  �Leigh Syndrome Patients’ Fibroblasts

Leigh syndrome (Leigh disease) (OMIM 256000) is an inherited, mitochondrial, 
neurodegenerative disorder mostly manifested in the central nervous system and is 
known as subacute necrotic encephalo(mio)pathy. First, symptoms of Leigh syn-
drome very often apparent in infancy; however, in some cases early symptoms can 
begin in the teenage or adult years. Leigh syndrome can be caused by mutations in 
more than 75 different genes (in mitochondrial and nuclear DNA) encoding proteins 
involved mostly in oxidative phosphorylation. For this reason, we can identify two 
groups of Leigh syndrome: (a) mitochondrial DNA-associated Leigh syndrome 
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(approximately 20% of cases) caused by mutations in at least 11 mitochondrially-
encoded genes, with an estimated incidence of 1 in 100,000 to 1 in 140,000 births, 
and (b) nuclear DNA-associated Leigh syndrome (approximately 80% of all cases), 
with an estimated incidence of 1 in 30,000 to 1 in 40,000 people at birth (Lake et al. 
2015). The most common causes of Leigh syndrome are mutations in the complex 
I-encoding genes (mutations in at least 25 genes have been identified). Leigh syn-
drome is associated also with a defect in complex IV (approximately 15% of cases), 
with the most frequent mutations in genes encoding SURF1 and SCO2 proteins. 
The other frequent mutation causing Leigh syndrome affects the MTATP6 gene-
encoding subunit a  of mitochondrial ATP synthase (10% of Leigh cases). Leigh 
syndrome can also be caused by mutations in genes encoding subunits of pyruvate 
dehydrogenase complex or in genes encoding proteins involved in CoQ10 
biosynthesis.

CoQ10, a natural lipid-soluble quinone analogue (known also as ubiquinone), is 
a component of the mitochondrial respiratory chain involved in electron transport. 
CoQ10 supplementation partially restores the activities of the mitochondrial respi-
ratory chain enzymes in MELAS fibroblasts and MERRF cybrids (Cotán et  al. 
2011; De la Mata et al. 2012). Hirano et al. showed that coenzyme Q10 supplemen-
tation had a positive effect in fibroblasts with CoQ10 deficiency (Hirano et al. 2012). 
Interestingly, treatment of fibroblasts from patients with CoQ10 deficiency with 
coenzyme Q2, a shorter chain analogue of CoQ10, has no effect on mitochondrial 
parameters (López et al. 2010). Several studies demonstrated that treatment with 
coenzyme Q and its analogs can be beneficial in Leigh syndrome, as well as in 
Leigh-like syndrome (Haas 2007; Rahman 2015).

Recently, Kanabus et al. (2016) reported that decanoic acid supplementation of 
fibroblasts derived from patients with Leigh syndrome associated with nuclear-
encoded defects of complex I increases mitochondrial biogenesis (via PPAR-γ 
receptor) in approximately 50% of studied fibroblast lines. Moreover, decanoic acid 
increases cellular resistance to oxidative stress by increasing catalase expression 
(Kanabus et al. 2016).

Treatment of fibroblasts derived from patients with decreased levels of mito-
chondrial complex I with Trolox, a water-soluble vitamin E derivate, causes a sig-
nificant decrease in the ROS level (Koopman et al. 2008) and increases complex I 
level. Koopman et al. speculates that the level of active complex I in the mitochondria 
is under regulatory control of the cell’s oxidative balance (Koopman et al. 2008). 
Therefore, the antioxidant Trolox can mitigate complex I deficiency. Importantly, 
the authors claim that such treatment is beneficial to only patients with predominant 
expression of complex I, rather than an intrinsic catalytic defect in this respiratory 
chain complex. Moreover, Distelmaier et al. showed that Trolox supplementation 
also has a positive effect on mitochondrial membrane potential and calcium-
stimulated ATP production in complex I-deficient human fibroblasts (Distelmaier 
et al. 2009).

It has been demonstrated that riboflavin (precursor of flavin mononucleotide—
FMN) also had a positive effect on fibroblasts derived from patients with a complex 
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I defect related to mutation in the NDUFS2 gene and genes encoding assembly 
factors (ACAD9 and AIF), as well as in MELAS patients’ fibroblasts (Garrido-
Maraver et al. 2012; Gerards et al. 2011; Saada 2011). Vitamins such as vitamin K 
and vitamin C also have positive effects on patients’ fibroblasts. Vitamin K (mena-
dione) and vitamin C (ascorbate) are potential electron donors for complexes II 
and IV, respectively. For this reason, these compounds have positive effects on 
fibroblasts with an affected complex I and fibroblasts with a CoQ deficiency 
(Saada 2011). Additionally, ascorbate was found to decrease superoxide levels and 
reduce manifestation of oxidative stress in QoQ2-deficient fibroblasts (López 
et al. 2010). In turn, resveratrol, a polyphenol of natural origin present in the skin 
of fruits, such as grapes, blueberries, raspberries and mulberries, can decrease 
oxidative stress in complex I-deficient patients’ cell lines, as well as restore oxy-
gen consumption in these cells (Lopes Costa et al. 2014; Mathieu et al. 2016). On 
the other hand, resveratrol can inhibit mitochondrial ATP synthase, which makes 
possible therapy risky for individuals harboring defects in the ATP synthesis pro-
cess (Gledhill et al. 2007).

Recent studies by Ehinger et al. using fibroblasts from patients with Leigh syn-
drome (with a recessive mutation  in NDUFS2 gene) showed that cell membrane 
permeable succinate prodrugs (diacetoxymethyl succinate; bis-(1-acetoxy-ethyl) 
succinate and 1-acetoxyethyl acetoxymethyl succinate) access the intracellular 
space and release succinate, which enables transport of electrons from complex II 
and ATP production by bypassing the deficiency of complex I (Ehinger et al. 2016).

The positive effect of bezafibrate on mitochondrial parameters has been observed 
in fibroblasts of patients with complex IV deficiency caused by mutation in the 
SCO2 gene. Casarin et al. found that copper (100 μM CuCl2) and 200 μM bezafi-
brate had no effect on SCO2 fibroblasts when supplemented separately (Casarin 
et al. 2012). However, when used together, they caused a complete rescue of COX 
activity in SCO2 cells. Ten years earlier, the same group showed that 100 μM CuCl2 
alone can fully restore activity of cytochrome c oxidase not only in fibroblasts but 
also in myotubes and mioblasts from patients with SCO2 gene mutation (Salviati 
et al. 2002).

Menzies et al. studied the effect of a thyroid hormone (3,3′,5-triiodothyronine; 
T3) on mitochondrial parameters and the status of oxidative stress in two patients 
with Leigh’s syndrome (one harboring a m.G13513A mutation in the MTND5 gene 
and the second with a m.T9185C mutation in the MTATP6 gene) (Menzies et al. 
2009). They observed that ROS production in T3-treated patients’ fibroblasts was 
decreased by 40%, accompanied by a 1.3-fold increase in complex IV activity and 
a 1.6-fold increase in the ATP level; moreover, the level of MnSOD was restored to 
control levels. The positive effect of T3 treatment was not related to the transcrip-
tional coactivator peroxisome proliferator-activated receptor gamma coactivator 
1-alpha (PGC1α) or mitochondrial transcription factor A (TFAM). This is because 
the level of these proteins was not changed by T3, and the mitochondrial mass was 
the same before and after T3 treatment of the studied Leigh’s syndrome patients’ 
fibroblasts (Menzies et al. 2009).

Recovering Mitochondrial Function in Patients’ Fibroblasts



368

3.4  �Fibroblasts from Patients with Combined Deficiency 
of Complexes I, III, IV and V with a Normal  
Complex II Level

The combined deficiency of complexes I, III, IV and V with a normal level of com-
plex II in patients can be caused by (a) deletions in mtDNA and point mutations in 
mt tRNA-encoding genes (Kemp et al. 2011); (b) mtDNA depletion related to auto-
somal recessive mutations in nuclear genes involved in mtDNA replication and 
maintenance (Spinazzola et al. 2009) and (c) mutations in nuclear-encoded compo-
nents of the mitochondrial translation machinery (Smits et  al. 2010). Soiferman 
et al. presented that ascorbate can reduce the ROS level/production in fibroblasts of 
patients with defects in elongation factors (EFTs) (Soiferman et al. 2014). Moreover, 
he found that after ascorbate administration, the activity of complex IV was 
increased, which was accompanied by a higher level of ATP (Soiferman et al. 2014). 
In the same work, he showed that another compound with antioxidant properties, 
N-acetyl cysteine (NAC), which is a precursor of cysteine and glutathione, decreases 
the ROS level in these fibroblasts as well as in fibroblasts from patients with defects 
in mitochondrial t-RNA uridylation (TRMU) (Soiferman et al. 2014). Interesting 
studies have been performed by Wang et al. with the use of Kearns-Sayre patients’ 
fibroblasts (Wang et  al. 1996). Kearns-Sayre syndrome, a commonly diagnosed 
mitochondrial cytopathy, is caused by mitochondrial DNA deletion (removal of a 
4977-base pair segment of the mtDNA encoding mitochondrial respiratory chain 
subunits). They found that in Kearns-Sayre syndrome fibroblasts, azidothymidine 
and dideoxynucleosides cause a depletion of wild-type mtDNA, while increasing 
the number of copies of mtDNA with deletions (Wang et al. 1996).

3.5  �Fibroblasts from Patients with Complex II Deficiency

Complex II deficiency is an autosomal recessive mitochondrial disorder with a 
highly variable phenotype that can be caused by mutations in the SDHA, SDHB, 
SDHC, SDHD, or SDHAF1 and SDHAF2 genes encoded in the nuclear 
DNA. Symptoms of mitochondrial complex II deficiency can vary from severe to 
life-threatening symptoms in infancy to muscle disease beginning in adulthood. It 
has been described that two inheriting mutations in the SDHA gene are associated 
with myoclonic seizures and Leigh’s syndrome. The studies performed by De Paepe 
et al. showed that resveratrol supplementation had no effect on complex II deficient 
fibroblasts (derived from patients with complex II activity close to the method 
detection limit; one patient with an unknown pathogenic mutation and a second one 
harboring a homozygous c.G622T mutation in the NFU1 gene-encoding protein 
involved in the formation of iron-sulfur (Fe-S) clusters) (De Paepe et al. 2014). In 
fibroblasts from these patients, complex II activity after resveratrol treatment was 
still negligible (De Paepe et  al. 2014). In contrast, fibroblasts from patients 
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harboring the homozygous c.G1663A mutation in the SDHA gene and characterized 
by a higher basal complex II activity (comparing to the above described two other 
patients with complex II deficiency) when treated with resveratrol showed a sig-
nificant increase in complex II activity. This indicates that the pivotal effect of 
resveratrol supplementation depends on the residual complex II activity (De Paepe 
et al. 2014).

3.6  �MERRF Patients’ Fibroblasts

Myoclonic epilepsy with ragged red fibers (MERRF) syndrome is a maternally-
inherited mitochondrial encephalomyopathy. In the case of MERRF syndrome, 
the most common symptoms are myoclonus epilepsy, generalized seizures, ataxia 
and myopathy. With MERRF, four different point mutations are associated; how-
ever, the most common one (found in 80–90% of MERRF patients) is the 
m.A8344G mutation in the tRNALys gene of mitochondrial DNA. This mutation 
is associated with severe defects in mitochondrial protein synthesis, which affects 
the mitochondrial respiratory chain and ATP synthesis. Skin fibroblasts from 
patients with MERRF syndrome are characterized by significantly increased ROS 
production and an increased level of matrix metalloproteinases (MMPs), which 
can be considered as a progressive marker of neurodegenerative diseases (Wu 
et  al. 2010). The increased level and activity of MMPs may contribute to the 
cytoskeleton remodeling involved in the weakness and atrophy of muscles com-
monly seen in MERRF patients (Wu et  al. 2010). Interestingly, no significant 
changes in the antioxidant defense system have been observed. Only the level and 
activity of SOD2 was increased in MERRF patients’ fibroblasts. Increased oxida-
tive stress can be responsible for the oxidative damage of the voltage-dependent 
anion channel (VDAC) and aconitase in the MERRF fibroblasts (Wu et al. 2010). 
Fascinating studies with the use of MERRF patients’ fibroblasts have been per-
formed by Chang et al. (2013). They demonstrated that, using the cell-penetrating 
peptide (Pep-1), they could deliver functional mitochondria isolated from 
“healthy” fibroblasts into the MERRF fibroblasts (peptide-mediated mitochon-
drial delivery). The MERRF fibroblasts receiving 3 days of treatment with pep-
tide-mediated mitochondrial delivery restored mitochondrial respiratory chain 
subunits of complexes I, III and IV. This was accompanied by recovery of the 
mitochondrial membrane potential, ATP synthesis and a decrease in the ROS 
level and the recovery of the mitochondrial function has been maintained for at 
least 21 days (Chang et al. 2013). Interestingly, an opposite experiment where 
healthy cells were treated with mitochondria isolated from MERRF fibroblasts 
showed that previously healthy recipient cells showed a MERRF phenotype, 
which was characterized by increased ROS production and MMP activity (Chang 
et al. 2013; Clauser and Scibak 1990). More about delivering healthy mitochondria 
as a potential tool in the therapy of mitochondrial disorders can be found in the 
review by Liu et al. (2014).
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3.7  �Fibroblasts from Patients with Propionic Acidemia

Propionic acidemia (PA) is caused by a deficiency in propionyl-CoA carboxylase 
(mitochondrial enzyme) and is one of the most frequent organic acidurias in humans 
(incidence of 1 in 150,000 inhabitants). Propionic acidemia patients during the neo-
natal period develop different neurological symptoms and movement disorders. 
Gallego-Villar et  al. found that the fibroblasts derived from PA patients have 
increased ROS levels (Gallego-Villar et al. 2013). Later studies of Gallego-Villar 
et al. showed that antioxidant treatment successfully decreases high ROS levels in 
PA patients’ fibroblasts, as well as the levels of mitochondrial superoxide dismutase 
and GPx1 (depending on used compound) (Gallego-Villar et al. 2014). They tested 
the effect of vitamin E, trolox, tiron, N-acetyl-cysteine (NAC), melatonin, resvera-
trol and MitoQ on oxidative stress manifestation in PA fibroblasts. The compounds 
used have different antioxidant actions. Vitamin E and Trolox neutralize lipid-
derived radicals. NAC is a precursor of glutathione and can scavenge different types 
of ROS. Melatonin, which is a direct free radical scavenger, increases the efficiency 
of the antioxidant defense system. Resveratrol inhibits lipid peroxidation and is a 
direct ROS scavenger. MitoQ is a mitochondria-targeted antioxidant that can protect 
against oxidative damage within the mitochondria. Interestingly, they demonstrated 
that resveratrol, Trolox, Tiron and MitoQ decreased the ROS level in all studied 
PA-derived fibroblasts (Gallego-Villar et al. 2014). The strongest antioxidant effect 
was observed for Tiron (50–80%), then for MitoQ (25–30%) and finally for Trolox 
(15–30%). However, it is necessary to mention that the effect of individual com-
pounds depends on the patient’s cell line. The strongest effect was observed for the 
fibroblasts with the highest ROS level. On the contrary, melatonin, N-acetyl cyste-
ine (NAC) and vitamin E had absolutely no effect on the oxidative stress in these 
fibroblasts (Gallego-Villar et al. 2014).

3.8  �Fibroblasts from Patients with Friedreich Ataxia

Friedreich ataxia (FRDA), is the most common recessively inherited ataxia, which 
is caused by defective expression of frataxin (mitochondrial protein), leading to the 
progressive loss of neuromuscular function. The decreased level of frataxin is 
responsible for the accumulation of iron within the mitochondria, increased oxida-
tive stress and decreased activity of iron-sulfur cluster-containing enzymes. 
Altogether, this causes mitochondrial dysfunction in FRDA patients. An interesting 
study performed by Jauslin et al. compared the protective effect of mitochondria-
targeted and untargeted antioxidants in fibroblasts from FRDA patients (Jauslin 
et al. 2002). They studied the effect of these compounds on the viability of FRDA 
patients’ fibroblasts treated with an inhibitor of GSH biosynthesis (BSO) and thus 
showed an artificially-reduced glutathione level. Their experimental approach was 
based on the fact that BSO treatment leads to a decrease in the GSH level in control 
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cells and FRDA fibroblasts but caused cell death only in FRDA fibroblasts (Jauslin 
et al. 2002). They found that MitoQ, was approximately 800-fold more effective 
than idebenone, the coenzyme Q10 untargeted analog, in protecting FRDA fibro-
blasts against GSH depletion-related cell death. Similarly, mitochondria-targeted 
MitoVit E was 350-fold more efficient at protecting the cells than Trolox, the water-
soluble analog of vitamin E (Jauslin et al. 2003). The other classes of compounds, 
lipophilic iron chelators, have been investigated by Lim et al. (2008). They investi-
gated the properties of the 2-pyridylcarboxaldehyde isonicotinoyl hydrazone 
(PCIH) class of chelators as agents rescuing Friedreich’s ataxia patients’ fibroblasts 
from H2O2-induced cytotoxicity.

3.9  �Fibroblasts from Patients with Alzheimer’s Disease

Alzheimer’s Disease (AD) is a chronic neurodegenerative disease. The most com-
mon early symptom of Alzheimer’s can be difficulty remembering newly learned 
information (short-term memory loss), and at later stages of disease progression, 
symptoms can also include disorientation, problems with language and not manag-
ing self-care. Interestingly, most people with Down syndrome develop Alzheimer’s 
disease. The cause of Alzheimer’s disease is poorly understood, and AD is often 
attributed to a variety of causes. It has been found that the apolipoprotein E (APOE) 
gene is involved in the late-onset form of AD (symptoms become apparent in their 
mid-60s). APOE ε4 increases a person’s risk of developing AD. The accumulation 
of intracellular aggregates of tau protein in the neurofibrillary tangles and extracel-
lular aggregates of a set of polypeptides called amyloid-β peptides in the senile 
plaques is the major histological hallmark of AD.  Alzheimer’s disease is not a 
mitochondrial disease per se; however, there is direct link between AD, mitochon-
drial dysfunction and oxidative stress. For this reason, oxidative stress and elevated 
ROS production are used as a target to ameliorate cellular and mitochondrial 
parameters in AD patients’ fibroblasts. Among others, Moreira et al. showed that 
administration of lipoic acid and N-acetyl cysteine inhibits apoptosis and decreases 
oxidative stress in fibroblasts from patients with Alzheimer’s disease, which sug-
gests that antioxidant therapy based on these compounds may be promising 
(Moreira et al. 2007).

3.10  �Fibroblasts from Patients with Influenza-Associated 
Encephalopathy

Influenza-associated encephalopathy (IAE) is an acute brain dysfunction that 
usually occurs at the early stage of infectious diseases caused mainly by influenza 
virus, human herpes virus-6 (HHV-6) and many other viruses. IAF incidence is 
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highest in infancy and early childhood and occurs more frequently in East Asians 
than in Caucasians (Kasai et  al. 2000). In addition to brain dysfunction, IAE 
patients also show development of multiple-organ failure. Interestingly, Yao 
et al. showed that a high number of patients with a disabling or fatal form of IAE 
have a thermolabile phenotype of compound variants of carnitinepalmitoyltrans-
ferase II (CPT II) (Yao et al. 2011). Such patients are characterized by a mito-
chondrial energy crisis during high fever. It is related to dysfunction of the 
mitochondrial fatty acid β-oxidation, which is caused by heat-inactivation of car-
nitine palmitoyltransferase II (CPT II) in patients with the thermolabile pheno-
type of CPT II (Yao et  al. 2011). Treatment of such fibroblasts for 24  h with 
bezafibrate significantly increased the CPT II activity, increased mitochondrial 
fatty acid β-oxidation, restored decreased ATP levels and increased the mito-
chondrial membrane potential in fibroblasts of IAE patients cultured at both 
37 °C and 41 °C. The studies of Yamaguchi et al. indicate the possible therapeu-
tic properties of bezafibrate in IAE patients with thermolabile variants of CPT II 
(Yamaguchi et al. 2012).

4  �Conclusion

As presented in this chapter, several different pharmacological treatments of 
patients’ fibroblasts have been performed to find the most potent and appropriate 
way to ameliorate mitochondrial defect or mitigate oxidative stress. More details 
about the different strategies and treatments of mitochondrial disorders can be found 
in an excellent review written by Scarpelli et  al. (2014). Moreover, the paper of 
Voets et al. elegantly shows how fibroblast analysis enables identification of patients 
who potentially can benefit from the antioxidant therapy (Voets et  al. 2012). 
Similarly, a comprehensive review describing the use of individual patient fibro-
blasts in the search for personalized treatment has been presented by Saada (2011). 
Finally, we also recommend a systematic review written by Rai et al. describing 
pharmacological therapeutics tested using in vitro models (Rai et al. 2015), a review 
by Rajendran et  al. summarizing the impact and involvement of antioxidants in 
selected human diseases (Rajendran et al. 2014), and a review by Kanabus et al. 
(2014) and Koopman et al. (2016).
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