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Abstract

The execution of proper Ca2+ signaling requires close apposition between

the endoplasmic reticulum (ER) and mitochondria. Hence, Ca2+ released

from the ER is “quasi-synaptically” transferred to mitochondrial matrix,

where Ca2+ stimulates mitochondrial ATP synthesis by activating the

tricarboxylic acid (TCA) cycle. However, when the Ca2+ transfer is

excessive and sustained, mitochondrial Ca2+ overload induces apoptosis

by opening the mitochondrial permeability transition pore. A large num-

ber of regulatory proteins reside at mitochondria-associated ER

membranes (MAMs) to maintain the optimal distance between the

organelles and to coordinate the functionality of both ER and mitochon-

drial Ca2+ transporters or channels. In this chapter, we discuss the differ-

ent pathways involved in the regulation of ER-mitochondria Ca2+ flux and

describe the activities of the various Ca2+ players based on their primary

intra-organelle localization.
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4.1 Introduction

The endoplasmic reticulum (ER) and the mito-

chondrion in living cells are two essential

organelles with roles that are classically quite

distinct. Evidence has been accruing over the

years that points to a specific interplay and coop-

eration between these compartments that is

essential for several cellular functions, such as

Ca2+ signaling, lipid metabolism, autophagy,

inflammation, cell survival, and cell death

(Decuypere et al. 2011; Lamb et al. 2013; Marchi

et al. 2014; Vance 2014; Patergnani et al. 2015).

These close appositions between the ER and

mitochondria represent a site where

microdomains with a high Ca2+ concentration

([Ca2+]) are generated upon IP3-mediated Ca2+

release (Rizzuto et al. 1998). Ca2+ accumulation

in the mitochondrial matrix occurs through the

mitochondrial calcium uniporter (MCU) and by

the membrane potential (ΔΨm) that exists across

the inner mitochondrial membrane (IMM)

(Marchi and Pinton 2014). The MCU has a low

Ca2+ affinity (Kd approximately 10–20 μM), and

thus, the Ca2+ uptake rate, particularly under

resting conditions, is extremely slow (Gunter

and Gunter 2001). Based on this consideration,

it was long assumed that mitochondrial Ca2+

uptake was of little importance in cell physiol-

ogy. Although initial experiments suggested that

mitochondrial [Ca2+] ([Ca2+]m) could increase up

to �10 μM, subsequent research revealed that

[Ca2+]m may in fact transiently reach near mM

levels in different systems (Montero et al. 2000).

It is the ER-mitochondria connection that allows

for fast uptake of a large amount of Ca2+ inside

the mitochondrial matrix, where the rapid diffu-

sion of ions within it permits the swift tuning of

mitochondrial metabolism to address the needs

of the cell (Rimessi et al. 2008).

ER-mitochondria Ca2+ transfer is fundamental

to ensure the cellular energy supply by

modulating key enzymes involved in mitochon-

drial ATP production (Bonora et al. 2012). How-

ever, excessive transfer of ER Ca2+ to

mitochondria is a pro-apoptotic signal with

important consequences for cell fate (Giorgi

et al. 2012). In other words, ER-mitochondria

connections are relevant for cell survival, and

the maintenance of the proper spacing between

the ER and mitochondria appears critical for

proper cell functioning (Naon and Scorrano

2014). Tomography analysis has shown that

tethers of �10 nm or �25 nm adjoin the two

organelles, depending on whether smooth ER

and/or rough ER are implicated (Csordas et al.

2006). These sites of contact are typically termed

mitochondria-associated ER membranes

(MAMs) (Giorgi et al. 2015c).

The development and expression of

ER-mitochondria artificial linkers revealed that

the length of the tethers is strategic. Using

rapamycin-inducible fluorescent inter-organelle

linkers, Csordas et al. (Csordas et al. 2010) ele-

gantly demonstrated that the spatial relationship

between the ER and the outer mitochondrial

membrane (OMM) is a critical factor in the effi-

cient transfer of Ca2+ and is likely to affect the

other functions of the junction in various ways.

The distance between the ER and the OMM may

vary in different pathophysiological situations. In

response to apoptotic agents, the

ER-mitochondria gap narrows (Csordas et al.

2006). Also, during the early phases of ER stress,

the number of ER-mitochondria contacts

increases and their Ca2+ transfer is enhanced,

helping the cell to overcome this emergency

state through the modulation of key mitochon-

drial metabolic events (Bravo et al. 2011, 2012).

These observations reflect the extremely

dynamic nature of MAMs, which is now gener-

ally assumed to be a strategic intracellular plat-

form that employs Ca2+ flux to regulate a wide

range of biological processes (Naon and

Scorrano 2014). For example, ER-mitochondria

connections are essential for modulating mito-

chondrial fission. In the close appositions

between the ER and mitochondria, organelle

constriction occurs via a Ca2+-dependent mecha-

nism that involves recruitment of the cytosolic

dynamin-related protein 1 (Drp1) and the

mitochondria-associated membrane protein

syntaxin17 (Friedman et al. 2011; Arasaki et al.

2015). Mitochondrial fission, in turn, is an
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essential event that is involved in mitochondrial

network shaping, and it is required to generate

small organelles to be transported or to facilitate

the removal of damaged organelles by a selective

form of autophagy, termed mitophagy (Haroon

and Vermulst 2016). Bulk autophagy directly

depends on ER-mitochondria juxtaposition. Not

only does the ER membrane supply material for

the formation of autophagosomes (Tooze et al.

2010), but the ER-mitochondria contacts may

also be the specific regions where

autophagosomes start to form, due to the MAM

localization of the pre-autophagosomal ER pro-

tein Atg14 (Hamasaki et al. 2013; Lamb et al.

2013).

Therefore, the correct organization, the

mutual interactions between the ER and

mitochondria, and their Ca2+ crosstalk are linked

events aimed at coordinating important functions

of the two organelles, and these events determine

key aspects of cell fate. For these reasons, a huge

number of proteins are gathered at the

ER-mitochondria interface to regulate MAM

dynamics, thereby preserving the intracellular

equilibrium. Indeed, alterations in both MAM

architecture and composition lead to different

pathological conditions, which in many cases

are accompanied by a drastic dysregulation of

the intracellular Ca2+ homeostasis and dynamics

(Patergnani et al. 2011). In this chapter, we will

discuss the different pathways controlling Ca2+

flux from the ER to the mitochondria and their

impact on the physiological state of the cell, and

the activities of the various Ca2+ players will be

distinguished based on their primary intra-

organelle localization.

4.2 Ca2+ Signaling on the ER Side

The ER is the largest store of Ca2+ inside the cell.

In resting condition, the ER may contain

hundreds of μM free Ca2+ (in order of magnitude,

nearly three- to fourfold higher compared to the

cytosol) (Hofer and Schulz 1996; Bonora et al.

2013). Specific Ca2+ pumps and channels operate

to maintain the correct luminal [Ca2+] by

executing the correct balance between ER Ca2+

uptake and release (Ashby and Tepikin 2001)

(Fig. 4.1).

ER Ca2+ uptake is exclusively performed by

the sarco-/endoplasmic reticulum Ca2+-ATPase

(SERCA) pumps, which actively pump Ca2+

into the ER in an ATP-dependent manner

(Vandecaetsbeek et al. 2011). Three SERCA

genes (ATP2A1, ATPA2, and ATP2A3) are

present in the human genome. They generate

various splice variants that differ in their

C-terminal regions, and their expression is

dependent on tissue type and development stage

(Papp et al. 2012). Generally, SERCA1a and 1b

are widely present in adult and neonatal skeletal

muscle. The isoform 2a is highly expressed in

cardiomyocytes, while SERCA2b is ubiquitously

expressed, functioning as the housekeeping iso-

form. Finally, SERCA3 is the least studied

and gives rise to six isoforms. Among the differ-

ent SERCAs, the 2b isoform displays the highest

Ca2+ affinity and, thus, is the main isoform

involved in Ca2+ uptake in the ER in virtually

all cells, except skeletal and cardiac muscle.

Because SERCAs are the only pumps regulating

ER Ca2+ entry, it is not surprising that their

activity mediates a wide range of cellular

functions controlled by proper ER Ca2+ homeo-

stasis, including protein folding, lipid and steroid

synthesis, and cell death and survival processes

like proliferation, apoptosis, growth, and differ-

entiation (Vandecaetsbeek et al. 2011). These

functions are regulated by the luminal ER [Ca2+]

([Ca2+]ER) and by intracellular Ca2+ peaks and

oscillations. SERCAs influence the amplitude,

the shape, and the frequency of these modulatory

events. Their Ca2+-sequestering activity is

regulated by several physiological actors, such

as i) proteins, ii) posttranslational modifications,

and iii) microRNAs (miRNAs) (Harada et al.

2014; Melo et al. 2015). Their activity can also

be modulated by natural compounds and phar-

macological tools that either inhibit SERCA like

thapsigargin, BHQ, and CPAE (Lytton et al.

1991; Vangheluwe et al. 2009) or promote

SERCA like CDN1163 (Kang et al. 2016).

Important biological modulators of SERCA are

phospholamban (PLN), sarcolipin (SLN),

calreticulin, calnexin, TMX1, and ORMD1.
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Briefly, PLN regulates SERCA function through

direct protein-protein interactions (Vittorini et al.

2007). Additionally, SLN directly interacts with

SERCAs, and it has been demonstrated to modu-

late SERCA activity by lowering both the Ca2+

affinity and Ca2+ pumping rate (Asahi et al.

2003). Another protein that regulates SERCAs

is selenoprotein N (SEPN1). This redox-sensitive

protein is able to bind SERCAs and enhances

their ER Ca2+ uptake activity. This feature was

found sufficient to safeguard cells against reac-

tive oxygen species (ROS) produced during oxi-

dative protein folding (Marino et al. 2015). Also,

chaperones like calreticulin and calnexin have

been identified as functional SERCA interactors

and modulators. Calreticulin and calnexin were

proposed to inhibit SERCA based on their inhib-

itory impact on high-frequency Ca2+ waves in

Xenopus oocytes (Camacho and Lechleiter

1995; Roderick et al. 2000). Further work how-

ever revealed that overexpression of calreticulin

elevated steady-state [Ca2+]ER and increased the

ER refilling rates (Arnaudeau et al. 2002).

Finally, it has been reported recently that the

ER luminal protein disulfide isomerase TMX1

is a strong SERCA inhibitor. In fact, a lack of

TMX1 led to an increased ER Ca2+ uptake rate

and an increase in ER Ca2+ storage due to

Fig. 4.1 Ca2+ homeostasis at the ER-mitochondria interface. Overview on the multiple molecular pathways acting at

the ER side (See Sect. 4.2 for details)
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enhanced ER Ca2+ uptake activities of SERCA2b

(Krols et al. 2016; Raturi et al. 2016). Another

SERCA interactor and inhibitor besides TMX1 is

the ER-resident, transmembrane protein

ORMDL3, an asthma-associated gene product

(Cantero-Recasens et al. 2010). Modulation of

its expression levels implicates steady-state ER

and cytosolic Ca2+ levels and the activation of

UPR components.

As reported above, the ER also works as the

main source of releasable Ca2+ in the cells. Many

stimuli induce Ca2+ release, but two channel

families mainly control the ER Ca2+-release pro-

gram: ryanodine receptors (RyRs) and inositol

1,4,5-trisphosphate (IP3) receptors (IP3Rs)

(Foskett et al. 2007; Parys and De Smedt 2012;

Amador et al. 2013; Van Petegem 2015). RyRs

and IP3Rs form large tetrameric channels

(2 MDa and 1.2 MDa in size, respectively)

displaying structural and functional homology.

RyRs and IP3Rs are each encoded by three dif-

ferent genes leading for each to the expression of

three isoforms. RyR1 is predominantly expressed

in skeletal muscle and RyR2 in cardiac muscle

and brain, while RyR3 is expressed at low levels

in various tissues. With respect to the IP3Rs,

most cell types express a combination of IP3R1,

IP3R2, and IP3R3 in various proportions

(Vermassen et al. 2004; Ivanova et al. 2014).

There is only one known biological/physiologi-

cal activator of the IP3R, i.e., IP3 produced by

phospholipase C after activation of G protein-

coupled receptors or receptor tyrosine kinases

by various stimuli, including growth factors and

hormones (Foskett et al. 2007; Parys and De

Smedt 2012). RyRs however can be activated

through conformational coupling to voltage-

operated Ca2+ channels, by direct activation by

Ca2+ or in some cases by the second messengers

cADPR and NAADP (Gerasimenko et al. 2006).

The Ca2+ itself is for both the RyRs and the

IP3Rs, a very important regulator which acts in

a biphasic way, whereby a low [Ca2+] activates

the channels while a high [Ca2+] has an inhibi-

tory action. Finally, RyRs and IP3Rs are

regulated by phosphorylation/dephosphorylation

and by multiple regulatory proteins, some of

them being further explicated below. These

IP3R channels are implicated in a plethora of

physiological processes, including fertilization,

lymphocyte activation, brain rhythms and synap-

tic plasticity, memory formation, endocrine, and

exocrine gland function, and their dysregulation

underlies pathophysiological conditions, like

neurodegenerative diseases like Alzheimer’s dis-

ease, Huntington’s disease and amyotrophic lat-

eral sclerosis, autism spectrum disorders, bipolar

disorder, epilepsy, schizophrenia,

spinocerebellar ataxia, cancer, cardiac dysfunc-

tion, and hypertrophy (Berridge 2016). Also RyR

channels control different physiological

functions, mainly related to skeletal and cardiac

muscle contraction features (Van Petegem 2012).

However, RyR dysregulation has also been

implicated in neurodegenerative diseases like

Alzheimer’s disease (Briggs et al. 2017;

Popugaeva et al. 2017) and malignancies like

breast cancer (Zhang et al. 2011b).

Ca2+ influx into the cytosol also occurs

through ORAI and TRP channels, present in the

plasma membrane, in a mechanism dependent on

IP3R opening. In fact, when [Ca2+]ER decreases

during IP3-induced Ca
2+ release, stromal interac-

tion molecules 1 and 2 (STIM1 and 2) are

activated and, in turn, induce opening of ORAIs

and, finally, lead to the so-called capacitative or

store-operated Ca2+ influx from the extracellular

space (Prakriya and Lewis 2015). As a result of

this increased intracellular [Ca2+], key Ca2+-

dependent proteins (such as calpains and

calmodulins) are activated, and various Ca2+-

dependent cellular processes are initiated

(Berridge 2016). Several proteins control the

activity of the Ca2+-release mechanism mediated

by IP3Rs (Fig. 4.1). For example, the ER-resident

oxidoreductases Ero1α and ERp44 modulate ER

Ca2+ release by direct interaction with IP3Rs in a

redox-sensitive manner (Higo et al. 2005; Anelli

et al. 2012). Specifically, the ERp44 chaperone,

an ER luminal protein of the thioredoxin family,

directly inhibits Ca2+ release (which reinforces

Ca2+-dependent chaperones) by inactivating the

channel activity of the IP3R in a pH-, redox-state-

, and [Ca2+]ER-dependent manner (Higo et al.

2005). Furthermore, ERp44 mediates Ero1α
localization through the formation of reversible
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mixed disulfides (Anelli et al. 2003). Ero1α is an

ER-resident protein that localizes also at MAMs,

and its siRNA-mediated downregulation slightly

reduced the association between IP3R and

ERp44, suggesting that Ero1αmight have further

roles in assembling and/or maintaining MAM

integrity (Anelli et al. 2012).

It is very clear that a large number of proteins

regulate SERCA pumps and IP3R channels to

maintain the appropriate [Ca2+]ER. This is

because Ca2+ signals originating from the ER

are leading to Ca2+ oscillations, associated with

several cellular processes. As mentioned in the

“Introduction” section, Ca2+ release from the ER

is one of the main determinants for mitochondrial

homeostasis. In fact, basal Ca2+ oscillations

modulate mitochondrial metabolism of ATP pro-

duction, while sustained or excessive Ca2+

release may lead to cell death. As a demonstra-

tion of this feature, dysregulation of Ca2+ flux is

involved in several human disorders (Patergnani

et al. 2015).

The maintenance of proper ER Ca2+ homeo-

stasis also controls an elaborate surveillance sys-

tem called the ER quality control (ERQC)

system. In fact, inside the ER lumen a series of

chaperones exists, which are involved in ERQC

for the correct folding of ER proteins, and their

functions may vary depending on changes in

Ca2+ concentration (Fig. 4.1). The Ca2+-binding

proteins calreticulin, ERp57, and protein disul-

fide isomerase (PDI) are classical examples of

this family. In fact, PDI directly interacts with

calreticulin when the [Ca2+]ER is lower than

400 μM, whereas the complex dissociates upon

higher [Ca2+] (Baksh et al. 1995). Conversely,

ERp57-calreticulin is insensitive to variations in

[Ca2+], but it is dependent on Ca2+ binding by

calreticulin, showing a direct role for Ca2+ in the

regulation and maintenance of structural and

functional complexes involved in protein turn-

over and synthesis (Michalak et al. 2009). Inter-

estingly, another member of the PDI family,

calnexin, plays a dual role based on its localiza-

tion. At resting conditions, calnexin is highly

palmitoylated (“palm” in Figs.), which leads to

an increase of its localization at MAMs and reg-

ulation of Ca2+ signaling through its interaction

with SERCA2b causing its activation. During the

early, adaptive phases of ER stress, calnexin

becomes depalmitoylated, primarily acting at

the rough ER and employing its quality control

functions (Lynes et al. 2012, 2013). The MAM

localization of calnexin however not only

depends on a specific palmitoylation event but

also on the phosphorylation state of its cytosolic

domain, on its interaction with phosphofurin

acidic cluster sorting protein 2 (PACS2) (Myhill

et al. 2008), and on the activity of the ER Rab

protein Rab32 (Bui et al. 2010). The GTPase

Rab32 localizes to the ER and mitochondria,

and it has been identified as a regulator of

MAM properties that modulate ER Ca2+

handling and disrupt the specific enrichment of

calnexin in MAMs. However, it does not affect

the ER distribution of PDI and mitofusin-2 (Bui

et al. 2010).

Ca2+ ions are also important for the correct

maintenance of ER structure. This was first

reported in starfish eggs and then confirmed in

human cells, where the ER continuity was

affected by elevation of intracellular Ca2+ levels

(Terasaki et al. 1996). Interestingly, this feature

seemed to be regulated by protein kinase C

(Ribeiro et al. 2000), which was already found

to be involved in Ca2+ homeostasis, regulation of

cellular processes, and modulation of important

proteins and kinases (Pinton et al. 2007). In addi-

tion, the authors found that the high [Ca2+]

registered did not induce ER fragmentation,

only rearrangements of the ER network (Ribeiro

et al. 2000). Overall, these findings suggest that

Ca2+ dynamics regulate ER function without pro-

moting pathological effects.

Notably, the ER continuously exchanges pro-

tein and lipid components with the Golgi appara-

tus, which is also regulated by Ca2+. One

example may be found in thyroglobulin protein

that, once synthesized and modified in the ER, is

exported to the Golgi apparatus (Di Jeso et al.

2003). By treating thyroid differentiated cells

with Ca2+ ionophores or specific inhibitors of

ER channels and pumps, transport between the

ER and the Golgi apparatus is blocked (Di Jeso

et al. 1998). Intriguingly, it is not only the trans-

port from the ER to the Golgi that seems to be

regulated by Ca2+ levels but also transport from

the Golgi to the ER, and intra-Golgi transport is
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highly dependent on intracellular Ca2+

variations. Moreover, the existence of a local Ca
2+ gradient between the ER, the cytoplasm, and

the Golgi apparatus has been demonstrated

(Wahl et al. 1992). These findings underline the

important role of intracellular Ca2+ in the traf-

ficking of material between the ER and the Golgi

and suggest that the mitochondrial compartment

is not the only organelle likely to receive Ca2+

signals from the ER.

4.3 Ca2+ Signaling
on the Mitochondrial Side

Mitochondria play a key role in many cell

functions through the regulation of Ca2+ signal-

ing. The increase in mitochondrial Ca2+ uptake

activates several dehydrogenases and carriers,

inducing an increase in the respiratory rate, H+

extrusion, and ATP production necessary for the

proper energy state of the cell (Rizzuto et al.

2012). As a matter of fact, overexpression of

isoforms of the mitochondrial aspartate/gluta-

mate carrier (AGC) promotes ATP production

during agonist-triggered Ca2+ increases, reveal-

ing that AGC plays an important role in decoding

Ca2+ signals in the activation of mitochondrial

oxidative metabolism (Lasorsa et al. 2003).

However, prolonged increase in [Ca2+]m leads

to opening of the mitochondrial permeability

transition pore (PTP) (Halestrap 2014; Jonas

et al. 2015; Morciano et al. 2015), a critical

event that leads to cell death by apoptosis

(Rizzuto et al. 2012; Bonora et al. 2015).

As stated previously, mitochondria can rap-

idly achieve a high [Ca2+]m due to (1) the pres-

ence of a driving force for Ca2+ generated by a

ΔΨm of �180 mV under physiological

conditions, (2) the formation of a large number

of Ca2+ microdomains at the ER-mitochondria

interface, and (3) the existence of a Ca2+-selec-

tive channel, termed the MCU complex, that is

able to receive the Ca2+ signals originating from

the ER (Fig. 4.2). Electrophysiological studies

have shown that the uniporter is an ion channel

with strikingly high conductance and selectivity

(Kirichok et al. 2004). MCU is part of the

uniporter holocomplex, which is also composed

of two membrane proteins, MCUb and EMRE,

which is regulated by MICU1 and MICU2

(Foskett and Philipson 2015; Kamer and Mootha

2015; Raffaello et al. 2016). Overexpression of

MCUb reduces the amplitude of the transient

mitochondrial Ca2+ response evoked by agonist

stimulation, whereas MCUb silencing achieves

the opposite effect, indicating that it acts as a

dominant-negative subunit that reduces the

uniporter channel activity (Raffaello et al.

2013). The role of EMRE in the regulation of

MCU activity is dual: (1) it was suggested to be

necessary for MCU channel activity, and indeed,

its silencing abrogates Ca2+ entry into

mitochondria (Sancak et al. 2013), and (2) it

was required for the interaction of MCU with

the regulatory subunits MICU1 and MICU2

(Tsai et al. 2016). Moreover, MCU complex is

regulated by miRNAs (Marchi et al. 2013; Pan

et al. 2015; Hong et al. 2017), underlining its role

in multiple physiopathological contexts, or could

be subjected to posttranslational modifications,

such as phosphorylations (Joiner et al. 2012;

O-Uchi et al. 2014) or methylations (Madreiter-

Sokolowski et al. 2016). These recent

observations confirm that mitochondrial Ca2+

homeostasis could be shaped by the wide molec-

ular panel of intracellular transducers (Pinton

et al. 2004).

The composition of the MCU complex has not

yet been fully defined. Several proteins have

been proposed to be part of it. One of the most

characterized is an IMM integral protein, named

MCUR1. Indeed, MCUR1 was initially shown as

a regulator of the MCU complex

(Mallilankaraman et al. 2012a), interacting with

MCU and EMRE but not with MICU1 or

MICU2, thereby functioning as a scaffolding

factor (Vais et al. 2015; Tomar et al. 2016).

However, MCUR1 was not identified by mass

spectrometry of affinity-purified MCU

complexes (Sancak et al. 2013), and it has been

proposed as a cytochrome c oxidase assembly

factor (Paupe et al. 2015).

The very low affinity of the MCU complex for

Ca2+ depends on the activity of the MICU1 and

MICU2 subunits, which localize at the
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mitochondrial intermembrane space and sense

the cytoplasmic Ca2+ through their EF-hand

domains, thus regulating the open/closed state

of the whole uniporter complex (Patron et al.

2014). At resting conditions (cytoplasmic [Ca2+

]<500 nM), the MICU1-2 dimer maintains the

complex in a closed state, preserving it from the

continuous accumulation of Ca2+ inside the

matrix and thus avoiding Ca2+-mediated detri-

mental effects, such as ROS production and

PTP opening (Mallilankaraman et al. 2012b;

Csordas et al. 2013). However, at high cytoplas-

mic Ca2+ levels ([Ca2+]>1–2 μM) or during ago-

nist stimulation, the MICU1–2 dimer undergoes

conformational changes that allow opening of the

channel, ensuring a prompt and complete mito-

chondrial Ca2+ response. The “high [Ca2+]

microdomains theory” implies that the MCU

complexes along the IMM should distribute at

ER-mitochondria associations to promote effec-

tive Ca2+ transfer. Indeed, De La Fuente et al.

recently showed that in cardiac mitochondria the

MCU complexes were enriched in the

IMM-OMM contact sites, positioned more to

the mitochondrial periphery than inside the cris-

tae, indicating high accessibility to cytoplasm-

derived Ca2+ inputs (De La Fuente et al. 2016).

In other words, mitochondrial Ca2+ channels are

Fig. 4.2 Ca2+ homeostasis at the ER-mitochondria interface. Overview on the multiple molecular pathways acting at

the mitochondrial side (See Sect. 4.3 for details)
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close to IP3Rs and RYRs on the ER or sarcoplas-

mic reticulum. Therefore, high [Ca2+] “hotspots”

([Ca2+]>10 μM) can be formed transiently in

these regions of close apposition between the

two organelles.

The conformational coupling between the

Ca2+ channels of the two organelles highlights

the importance of the macromolecular complexes

located in the MAMs for their functional interac-

tion (Fig. 4.2). In this respect, the OMM,

although traditionally considered freely perme-

able, is a critical determinant of mitochondrial

Ca2+ accumulation (Rapizzi et al. 2002). Ca2+

import across the OMM occurs through the

voltage-dependent anion channel (VDAC), the

most abundant protein of the OMM. The

VDAC protein family consists of three isoforms

(VDAC1–3), sharing a 75% sequence similarity.

VDACs are expressed in almost all mammalian

tissues, but recent studies indicate their nonre-

dundant role in a plethora of cell functions

(Naghdi and Hajnoczky 2016). Silencing of

either of the VDAC isoforms limits mitochon-

drial Ca2+ uptake, but only VDAC1 was found to

mediate pro-apoptotic Ca2+ transfer to

mitochondria with consequent cell death

(De Stefani et al. 2012; Ben-Hail and Shoshan-

Barmatz 2016). In contrast, VDAC2 appears to

be the pivotal isoform to locally couple mito-

chondrial Ca2+ uptake with RyR-mediated Ca2+

release in cardiac cells (Shimizu et al. 2015).

Further evidence of the role of VDACs was

supported by the demonstration of the physical

link between VDACs and the IP3R. Indeed, the

molecular chaperone glucose-regulated protein

75 (GRP75) was demonstrated to mediate the

molecular interaction between VDACs and

IP3Rs, allowing a positive regulation of mito-

chondrial Ca2+ uptake (Szabadkai et al. 2006).

Small interfering RNA (siRNA) silencing of

GRP75 abolishes the functional coupling

between IP3Rs and VDACs, thereby reducing

mitochondrial Ca2+ uptake in response to agonist

stimulation (Szabadkai et al. 2006). Interestingly,

thymocyte-expressed, positive selection-

associated gene 1 (Tespa1) has been

demonstrated to mediate Ca2+ transfer from

mitochondria-associated ER to mitochondria

interacting with GRP75 (Matsuzaki et al. 2013).

A crucial implication of a microdomain-based

signaling mechanism is that the positioning and

the shape of mitochondria within the cell become

critical determinants of their responsiveness to

Ca2+ inputs. Because of this, several mitochon-

drial proteins involved in the regulation of mito-

chondrial movement and morphology have also

been considered key regulators of MAM integ-

rity and functionality.

Mitochondrial trafficking is regulated by a

subfamily of the Ras GTPases, the proteins

Miro 1 and 2, which are located at the OMM

through a short C-terminal anchor domain and

have two EF-hand Ca2+-binding domains

through which they are able to sense high levels

of Ca2+ (Liu and Hajnoczky 2009). Miro proteins

have an important role in tethering the

mitochondria to the cytoskeleton by binding a

cytoplasmic factor, Milton, which binds the

kinesin 1 heavy chain on microtubules (Glater

et al. 2006). Miro is proposed to be a Ca2+ sensor

that stops mitochondrial movement in response

to increasing Ca2+ levels. In fact, increased cyto-

plasmic Ca2+ levels stop mitochondrial move-

ment, and this effect is suppressed when Miro is

depleted or a Miro EF-hand is mutated (Fransson

et al. 2003; Saotome et al. 2008).

In addition to the positioning of mitochondria,

fusion and fission events regulating the shape of

the organelles drastically influenced the mito-

chondrial Ca2+ responses (Patron et al. 2013).

Recent studies suggest a link between com-

ponents of mitochondrial dynamics and Ca2+

signaling. Mitochondrial fission is primarily

driven by Drp1, a cytoplasmic protein that is

recruited to the mitochondrial membrane, where

it circumscribes the OMM as a helical oligomer

(Smirnova et al. 2001; Rowland and Voeltz

2012). It is also interesting that high Ca2+ levels

lead to activation of Drp1, which increases mito-

chondrial fission, cooperating with Miro

(Saotome et al. 2008).

It has also been shown that the mitochondrial

fission protein fission 1 homolog (Fis1) conveys

an apoptotic signal from the mitochondria to the
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ER by interacting with Bap31 at the

ER. Therefore, Fis1 facilitates the cleavage of

Bap31 to its pro-apoptotic form, p20Bap31, pro-

moting the recruitment of procaspase-8. More-

over, this signaling pathway establishes a

feedback loop by releasing Ca2+ from the ER

and, consequently, results in Ca2+ accumulation

in mitochondria, amplifying cell death by

activating the apoptotic pathway in many

mitochondria that are in close proximity to the

ER (Iwasawa et al. 2011).

Other mitochondrial dynamin-related

GTPases involved in mitochondrial Ca2+ regula-

tion include mitofusin 1 and 2. In particular,

mitofusin 2 (MFN2) is a critical component of

the mitochondrial fusion/fission machinery. This

OMM profusion protein is also observed in the

MAMs where it couples to MFN1 or MFN2 on

the mitochondria to physically tether the

organelles. Indeed, in 2008 de Brito and

Scorrano showed that MFN2 is enriched at con-

tact sites between the ER and mitochondria,

regulating ER morphology and directly tethering

the two organelles (de Brito and Scorrano 2008).

Moreover, the distance between the ER and

mitochondria increases in cells lacking MFN2,

and this leads to impaired mitochondrial Ca2+

uptake, further verifying the validity of the Ca2+

microdomains theory.

The tethering role of MFN2 was confirmed by

other laboratories (Chen et al. 2012; Sebastian

et al. 2012; Schneeberger et al. 2013), but its

function was recently challenged by different

experimental approaches. Contrary to previous

studies, electron microscopy analyses suggested

that loss of MFN2 increased, rather than reduced,

ER-mitochondria juxtaposition (Cosson et al.

2012; Filadi et al. 2015). Moreover, it was

demonstrated that reduced Ca2+ transfer in

MFN2-knockout cells is the result of a lower

expression of MCU and is independent of

ER-mitochondria juxtapositions (Filadi et al.

2015). Therefore, they proposed a different role

for MFN2 in ER-mitochondria coupling, in

which the protein, rather than being a component

of the tethering complex, acts as a negative regu-

lator of organelle apposition. However, very

recently a critical reappraisal of MFN2’s role in

the ER-mitochondria connection was published,

supporting previous results and identifying

MFN2 as a physical tether between the two

organelles in multiple tissues (Naon et al. 2016).

The activity of MFN2 at the ER-mitochondria

interface is regulated by a mitochondrial ubiquitin

ligase called MITOL (Sugiura et al. 2013).

MITOL interacts with mitochondrial MFN2, but

not with ER MFN2, and mediates the addition of

lysine 63-linked polyubiquitin chains to MFN2

but not its proteasomal degradation. This

polyubiquitination event induces MFN2 oligo-

merization, allowing ER-mitochondria tethering

and Ca2+ uptake in the mitochondria upon stimu-

lation with histamine. The reduction in mitochon-

drial Ca2+ uptake that occurs in MITOL-deficient

cells highlights its key role as a MAM regulator

and confirms the idea that the distance between

the ER and mitochondria is crucial for proper Ca
2+ transfer. However, the role of MFN2 at MAM

is still highly debated, and new experimental evi-

dence is required for definitively establish its anti-

or pro-tethering functions.

4.4 Ca2+ Signaling at the MAM
Interface

MAMs represent the physical association

between the ER and mitochondria, an entity

with a defined structure and architecture with

distinct biochemical properties and a characteris-

tic set of proteins. The MAM fraction was first

separated and characterized by J. E. Vance

(Vance 1990), who described the isolation from

rat liver of a unique membrane, initially termed

“fraction X,” that was associated with

mitochondria and had a high specific activity

for several proteins attributed to the ER. After

this seminal observation, several biochemical

protocols have been described to isolate the

MAMs fraction, both from organs and cells, and

these studies confirmed that MAMs are com-

posed of membrane fragments from both the

ER and the OMM (Wieckowski et al. 2009).

In recent years, different proteomics studies

identified the molecular components of the

MAMs fraction, starting from human fibroblasts

(Zhang et al. 2011a) and mouse brain (Poston

et al. 2013), demonstrating that more than 1000
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“MAM proteins” reside in this fraction. More

recently, Sala-Vila et al. performed a very rigor-

ous high-throughput mass spectrometry-based

proteomics characterization of MAMs from

mouse liver, identifying 1052 MAM-enriched

proteins, which included several Ca2+ players,

such as SERCA2, IP3R, and the Ca2+-binding

mitochondrial carrier SLC25A12 (Sala-Vila

et al. 2016). Interestingly, they observed the

MAM localization of caveolin 1 (CAV1), and

CAV1-deficient cells displayed ER and mito-

chondrial aberrations, as well as reduced contact

sites between the two organelles (Sala-Vila et al.

2016). In line with this evidence, our group

showed that in transformed cells, H-RAS12V
expression was associated with CAV1

downregulation and a drastic alteration in Ca2+

homeostasis (Rimessi et al. 2014).

Other central players in the ER-mitochondria

Ca2+ flux include a series of chaperones and

oxidoreductases, which also localize to the

ER/MAMs compartment (Fig. 4.3). In addition

to the previously cited Ca2+-binding chaperone

calnexin (see Sect. 4.2), sigma-1 receptor

(Sig-1R) is one of the pivotal Ca2+ regulators

residing at MAMs (Hayashi and Su 2007).

Under normal conditions, Sig-1R resides specifi-

cally at MAMs and forms a complex with BiP

(also named grp78) when the ER Ca2+ level is

0.5–1 mM. However, when the IP3R is activated,

the subsequent drop of the [Ca2+]ER causes the

dissociation of Sig-1R from BiP, unleashing the

chaperone activity of the receptor. Interestingly,

IP3R3 seems to be enriched at MAMs (Mendes

et al. 2005), and its stabilization by Sig-1R

ensures proper Ca2+ influx into mitochondria.

A link between MAMs and Ca2+ signaling

also appears in the context of ER stress-mediated

apoptosis. The RNA-dependent protein kinase

(PKR)-like ER kinase (PERK), a key ER stress

sensor of the unfolded protein response, is

uniquely enriched at MAMs (Verfaillie et al.

2012). PERK-knockout cells display an aberrant

ER morphology, disturbed Ca2+ signaling, and

weaker contact sites between ER and

mitochondria; consequently, PERK likely serves

as a structural tether at the ER-mitochondria

interface. Collectively, these data highlight that

a conserved MAM structure is indispensable for

transmitting Ca2+ signaling as well as

ROS-mediated signals to the mitochondria after

ROS-based ER stress.

Ca2+ homeostasis is fundamental for numer-

ous cellular mechanisms, including cell death;

thus, it is not surprising that several oncogenes

and tumor suppressors localize at the MAMs,

where they play a crucial role in the control of

ER-mitochondria Ca2+ flux, favoring either sur-

vival or cell death (Bittremieux et al. 2016)

(Fig. 4.3).

A few years ago, our group showed that the

promyelocytic leukemia protein (PML), a tumor

suppressor known as an essential component of

nuclear structures termed PML nuclear bodies,

was localized to the ER and MAMs. PML

regulates apoptosis by modulating ER Ca2+

release (Giorgi et al. 2010). In MAMs, PML

was found to coordinate a complex that includes

IP3R3, Akt kinase, and phosphatase PP2A. In the

absence of PML, Akt phosphorylation and activ-

ity was increased at the ER due to impaired PP2A

activity, which resulted in impaired Ca2+ flux

through the IP3R because of its Akt-mediated

hyperphosphorylated state. Indeed, IP3R is a tar-

get of Akt kinase activity (Khan et al. 2006;

Szado et al. 2008), and Akt activation drastically

reduces IP3R-dependent ER Ca2+ release

(Marchi et al. 2008; Szado et al. 2008), especially

through IP3R3 phosphorylation (Marchi et al.

2012). These data have been confirmed by an

independent study, which reported the localiza-

tion of mechanistic target of rapamycin (mTOR)

complex 2 (mTORC2) at the MAMs (Betz et al.

2013). The serine/threonine kinase (mTOR) is a

pivotal regulator of autophagy and exists in two

protein complexes, mTORC1 and mTORC2. The

latter complex phosphorylates and activates Akt,

which phosphorylates MAMs-resident proteins

PACS2, IP3R, and hexokinase 2 (HK2) to regu-

late MAMs integrity, Ca2+ flux, and energy

metabolism, respectively (Betz et al. 2013).

More recently, we demonstrated that MAMs-

enriched PML also exerts an important Ca2+-

dependent role in the autophagic process,

through the AMPK/mTOR/Ulk1 pathway

(Missiroli et al. 2016). We overexpressed MCU
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in PML-KO cells to verify whether

downregulated ER-mitochondria Ca2+ transfer

is important for the induction of autophagy. We

demonstrated that increasing the ability of

mitochondria to accumulate Ca2+ in PML-KO

cells suppressed AMPK activity, thereby

repressing autophagic flux. These data suggest

that PML controls autophagy at MAMs through

its effects on Ca2+ homeostasis and that the loss

of PML from MAMs results in autophagy activa-

tion, a feature that promotes cell survival under

stress conditions and thus facilitates malignant

cell growth.

Among tumor suppressors, phosphatase and

tensin homolog deleted on chromosome

10 (PTEN) was found to be localized at the ER

and MAMs, where it modulates Ca2+ transfer

from ER to mitochondria in a protein

phosphatase-dependent manner that counteracts

the Akt-mediated reduction in Ca2+ release via

IP3Rs (Bononi et al. 2013). Moreover, the tumor

suppressor p53 also resides at ER and MAMs,

modulating ER Ca2+ efflux to the mitochondria

through modulation of the oxidative state of

SERCA pumps (Giorgi et al. 2015b; Giorgi

et al. 2015a).

Fig. 4.3 Ca2+ homeostasis at the ER-mitochondria interface. Overview on the multiple molecular pathways acting at

the MAMs side (See Sect. 4.4 for further details)
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Very recently FATE1, a cancer-testis antigen,

has been implicated in the regulation of

ER-mitochondria distance and Ca2+ uptake by

mitochondria (Doghman-Bouguerra et al.

2016). FATE1 is localized at the interface

between the ER and mitochondria and decreases

sensitivity to mitochondrial Ca2+-dependent

pro-apoptotic stimuli and to chemotherapeutic

drugs. This study emphasized how the

ER-mitochondria uncoupling activity of FATE1

is harnessed by cancer cells to escape apoptotic

death and resist the action of chemotherapeutic

drugs.

Taken together, these observations highlight

the role of ER-dependent Ca2+ release as a gen-

eral mediator in many cell deaths or cell survival

scenarios and reinforce the importance of MAMs

in Ca2+ handling.

4.5 Conclusions

The importance of MAMs in the control of vari-

ous cellular processes and its relevance for

human health is underpinned by the disease that

has linked to dysregulation and dysfunction of

the ER-mitochondria interface and architecture.

These diseases include obesity (Arruda et al.

2014) and type II diabetes (Tubbs et al. 2014),

as well as Parkinson’s and Alzheimer’s diseases

(Paillusson et al. 2016). MAM disorganization

results in abnormal ER-mitochondria Ca2+ flux,

which contributes to the formation of aberrant

mitochondrial structures and deep metabolic

alterations that are typical features of these path-

ological conditions. Based on the recent

observations suggesting an optimal distance of

30–85 nm between IP3R and the MCU complex

to achieve effective Ca2+ transfer and generation

of Ca2+ inputs (Qi et al. 2015), we need novel

technologies that enable an accurate and highly

precise measurement of the functional changes

occurring at MAMs to elucidate the local Ca2+

transport and signaling mechanisms.
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