Chapter 7

Assessing Extracellular ATP as Danger Signal In Vivo: The pmeLuc System

Francesco Di Virgilio, Paolo Pinton, and Simonetta Falzoni

Abstract

Inflammation is the key pathophysiological response triggered by noxious agents in multicellular organisms. Central to inflammation is detection of exogenous or endogenous danger signals by immune cells. Extracellular ATP is a ubiquitous danger signal released during septic or sterile inflammation. The development of reliable techniques to measure extracellular ATP in vivo has become an urgent need in inflammation studies after the discovery that the most potent plasma membrane receptor responsible for NLRP3 inflammasome activation is an ATP-activated receptor, P2RX7. Here we describe an easy bioluminescence technique for the measurement of extracellular ATP in vivo.

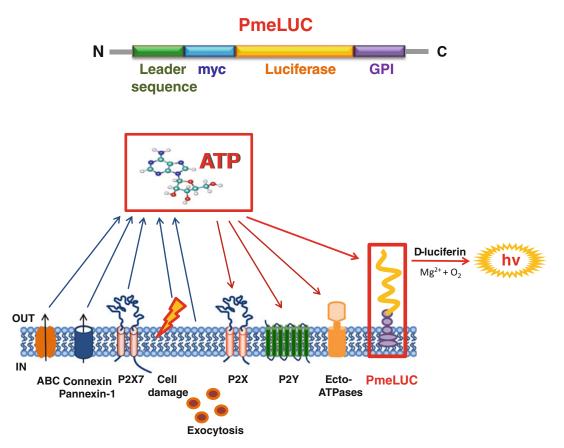
Key words Extracellular ATP, Plasma membrane luciferase, Luciferin, Luminescence, Luminometry

1 Introduction

Bioluminescence is a natural phenomenon, due to chemical emission of light (chemiluminescence) by living organisms, conserved in many different species (bacteria, protists, fungi, insect, several marine organisms) with the notable exception of higher terrestrial organisms. This process yields photons as a consequence of an exergonic reaction catalyzed by a family of enzymes (e.g., luciferases) that oxidize a photon-emitting substrate. Luciferase (Luc), mainly derived from the firefly *Photinus pyralis* or from the coelenterate *Renilla reniformis*, has been long used as an in vitro assay to measure ATP [1]. Firefly luciferase is a 62 kDa protein belonging to the adenylating enzyme superfamily. In the presence of magnesium ions, molecular oxygen, and ATP, luciferase catalyzes oxidation of the substrate D-luciferin (LH₂) accompanied by light emission in the green to yellow region (λ max = 560 nm). The reaction proceeds through three main steps:

Francesco Di Virgilio and Pablo Pelegrín (eds.), NLR Proteins: Methods and Protocols, Methods in Molecular Biology, vol. 1417, DOI 10.1007/978-1-4939-3566-6_7, © Springer Science+Business Media New York 2016

1. Formation of the intermediate Luc-D-luciferyl adenylate (LH₂-AMP), with release of inorganic phosphate (PPi):


 $Luc + LH_2 + ATP \rightarrow Luc \cdot LH_2 - AMP + PPi$

2. The intermediate complex Luc-D-luciferyl adenylate is oxidized by molecular oxygen with the formation of an excited enzyme-oxyluciferin-AMP complex and the release of carbon dioxide (CO₂):

$$Luc \cdot LH_2 - AMP + O_2 \rightarrow Luc \cdot AMP \cdot Oxylucifierin + CO_2$$

- 3. In the final step, energy loss from the excited complex produces photon emission and dissociation of the complex:
 - $Luc \cdot AMP \cdot Oxyluciferin \rightarrow Luc + Oxyluciferin + AMP + hv$

Photon emission is then recorded with a luminometer. A luminometer is made of photon-collecting apparatus (low-noise photomultiplier tube) and a computer station equipped with a software to allow data storage and analysis. The photomultiplier tube can be replaced by a high sensitive photo camera. Automated plate readers for luminescence (as well as fluorescence) measurement can also be used. Bioluminescence measurement in small animals is usually done with total body luminometers. Widespread use of bioluminescence techniques has made a tremendous impact in immunology and cancer where it has been used to investigate gene expression and track cancer cells in living animals. Luciferase reporter gene cloned downhill to many different promoters or fused in frame with the genes of interest allows to monitor the transcriptional activity of countless stimuli or to detect gene activation in many different pathophysiological conditions [2]. Alternatively, luciferase transfection has allowed investigation of intracellular ATP levels under many different metabolic conditions. Thanks to the possibility to fuse the luciferase gene in frame with leader sequences targeting various intracellular compartments, it has also become possible to monitor intra-organelle ATP changes [3]. Total body luminometry allows luminescence recording and analysis in those experimental settings where luciferase is used either as an in vivo intracellular reporter for cell tracking or as a probe to measure extracellular ATP. To perfect bioluminescence measurement of extracellular ATP, we have engineered a chimeric *firefly* luciferase selectively expressed on the outer aspect of the plasma membrane, and therefore named plasma membrane luciferase (pmeLUC) (Fig. 1) [4-6]. PmeLUC expression allows extracellular ATP monitoring in the extracellular compartment, notably in the close vicinity of the plasma membrane, thus pmeLUC-transfected cells can be used as in vivo reporters of the extracellular ATP concentration [7–9].

Fig. 1 Membrane topology of pmeLUC. The pmeLUC construct is made of the full-length coding sequence of luciferase (*yellow*) inserted in frame between the N-terminal leader sequence (*green*) and the C-terminal GPI anchor (*violet*) of the folate receptor. A c-myc tag (*light blue*) is added in frame for tracking purposes. The pmeLUC protein is targeted and localized to the extracellular aspect of the plasma membrane (from Falzoni et al., ref. 6)

2 Materials

2.1	Cells	Any cell type suitable to be transfected can be used as reporter of the extracellular ATP concentration with pmeLUC. We have used human HEK293 embryonic kidney cells, mouse CT26 colon car- cinoma cells, mouse B16 melanoma cells, and many others. We will describe here the basic protocol for HEK293 cells.
2.2	Cell Culture	 Cell media: Dulbecco's modified Eagle's medium (DMEM)-F12 medium containing 0.5 mM sodium pyruvate and 15 mM sodium bicarbonate, supplemented with 2 mML-glutamine, 10 % heat-inactivated fetal bovine serum (FBS), 100 U/ml penicillin, and 100 µg/ml streptomycin.
	Engineering meLUC	 pGL3 plasmid (Promega) <i>PstI</i>, <i>NotI</i>, <i>XhoI</i>, and <i>XhaI</i> restriction enzymes

- 3. pBSK+ vector (Stratagene)
- 4. *Pst*I fragment encoding the N-terminal leader sequence (26 aa) of the human folate receptor fused with a c-myc tag (10 amino acids)
- 5. *Pst*I fragment encoding the GPI anchor protein of the human folate receptor (28 amino acids)
- 6. pcDNA3 expression vector (Life Technologies)
- Leader-myc forward primer with Xbal site (underlined): 1AF forward: 5'-GGT CTA GAG GAG AGC CAC CTC CT-3'
- Leader-myc reverse primer without stop codon, with Pstl site (underlined): 1BR reverse: 5'-GGC TGC AGC AGG TCC TCC TCG CT-3'
- Luciferase forward primer with *Pst*l site (underlined): LucPstF forward: 5'-CC<u>C TGC AG</u>A TGG AAG ACG CCA AAA ACA TAA AGA AAG C-3'
- Luciferase reverse primer with *Pst*l site (underlined) and without stop codon: LucPstR reverse: 5'-G<u>CT GCA G</u>CC ACG GCG ATC TTT CCG CCC TTC TTG G-3'
- 11. 10× T4 ligase buffer: 200 mM Tris–HCl pH 7.6, 10 mM MgCl₂, 50 mM DTT, 500 μg/ml BSA, 10 mM ATP
- 12. T4 Ligase
- 13. Xl1-Blue E. coli
- 14. LB agar
- 15. Ampicillin
- 16. DNA extraction kit

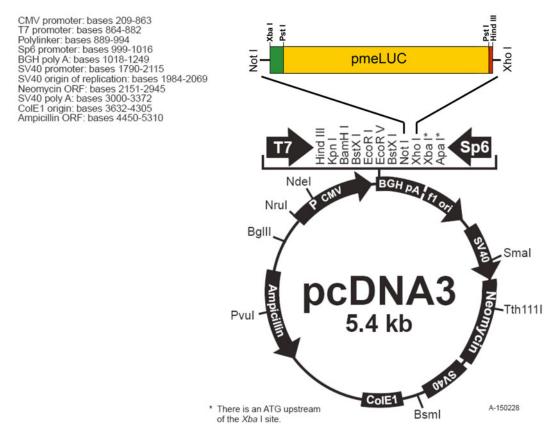
2.4 Transfection 1. Complete cell culture medium (*see* Subheading 2.2).

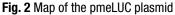
- 2. HEK293 cells.
- 3. 2.5 M CaCl₂ solution in distilled water and filter sterilize. Store in 500 μ l aliquots at -20 °C.
- 4. 2× HEPES-buffered saline (HBS-2X) solution: 280 mM NaCl, 50 mM HEPES base, 1.5 mM Na₂HPO₄, pH 7.12 with 0.5 N NaOH. Filter sterilize and store in 5 ml aliquots at −20 °C.
- Phosphate buffered saline (PBS): 137 mM NaCl, 4.3 mM Na₂HPO₄ 7H₂O, 1.4 mM KH₂PO₄, 2.7 mM KCl, pH 7.4.
- 6. TRIS/EDTA (TE) buffer: 10 mM Tris–Cl pH 7.4, 1 mM EDTA pH 8.0 in filter-sterilized distilled water.
- 7. 10 cm Petri dishes for tissue culture.
- 8. 10 ml conical tubes.
- 9. 40 μg pmeLUC plasmid, resuspend in 450 μl of aqueous TE solution.

- 10. 40 µg of pcDNA3 empty vector, resuspend in 450 µl of TE solution.
- 11. G-418.

2.5 Immuno-	1. 13 mm glass coverslips
fluorescence	2. 24-well cell culture plates
	3. 0.01 % poly-L-lysine solution in water
	4. PBS (see Subheading 2.4)
	5. 2 % gelatin solution, type B, in distilled filter-sterilized H_2O
	6. Anti c-myc-SC-40 monoclonal antibody (Santa Cruz Biotechnology)
	7. Texas Red-conjugated goat anti-mouse IgG
	8. FITC-conjugated anti-mouse antibody
	9. Prolong Gold [®] antifade reagent (Life Technologies) or other suitable antifade reagents
	10. 4 % paraformaldehyde solution in PBS
	11. 10× solution Cell Fix [™] (BD Biosciences)
2.6 In Vitro	1. 12-well cell culture plate.
Extracellular ATP	2. DMEM-F12 medium.
Measurement	 15 mg/ml D-luciferin stock solution in sterile PBS. Allow the luciferin solution to sit for a minimum of 15 min with gentle agitation prior to make 1 ml aliquots. Protect from light and store aliquots at -80 °C.
	 4. 100 mM adenosine-5'-triphosphate disodium salt (ATP) in 0.1 M Tris-base solution at pH 7.5. Store in 0.5 ml aliquots at -80 °C.
2.7 In Vivo	1. D-Luciferin.
Extracellular ATP	2. Complete HEK293 cell culture medium (see Subheading 2.2).
Measurement	 RPMI 1640 supplemented with 2 mM L-glutamine, 1 mM Na-pyruvate, 10 % FBS, 100 U/ml penicillin, and 100 μg/ml streptomycin.
	4. Isofluorane.
	5. Syringe and 27-gauge needle.
	 500 units apyrase from potato reconstitute in 1 ml of PBS buf- fer. Store in 50 μl aliquots at -80 °C.
	7. PmeLUC-transfected HEK293 cells (HEK293-pmeLUC).
	8. OVCAR-3 (human ovary carcinoma cell line) (see Note 3).
	9. MZ2-MEL (human melanoma cell line) (see Note 3).
	10. Athimic nude mice (<i>nude/nude</i> mice) 5–6 weeks old (Harlan Laboratories).

- Total body luminometer (we use Perkin-Elmer Caliper IVIS 100 System[™], but other compatible equipment is also suitable).
- 12. Apparatus for inhalatory anesthesia.
- 13. C57BL/6 or Balb/c 20 day old mice, weighing 12–14 g.
- 14. Dextran sulfate sodium salt powder from *Leuconostoc* spp. (MW>500,000): dissolve 5 g of DSS in 100 ml of filtered drinking water, adjust the pH at 8.5. Store at 4 °C.


3 Methods


of pmeLUC

3.1 Engineering

Firefly luciferase is amplified from the pGL3 plasmid (Promega) using the following primers: 5'-CC<u>C TGC AG</u>A TGG AAG CAA AAA ACA TAA AGA AAG G3' (corresponding to the sequence encoding luciferase amino acids 1–9; *Pst*I site underlined) and 5'-G<u>CT GCA G</u>CC ACG GCG ATC TTT CCG CCC TTC TTG G3' (corresponding to a 542–549 of luciferase cDNA without the stop codon; *Pst*I site underlined).

- 2. Thermal profile: denaturation at 95 °C for 30 min, hybridization at 62 °C for 30 min, polymerization at 72 °C for 2 min, repeat for 37 cycles.
- 3. Amplify the *leader-myc* sequence with primers described above using the following thermal profile: denaturation at 95 °C for 30 min, hybridization at 55 °C for 30 min, polymerization at 72 °C for 2 min, repeat for 32 cycles.
- 4. Transfer the PCR product to a pBSK+ vector, digest with *Pst*I, and insert in the right frame between a *Pst*I fragment encoding the N-terminal leader sequence of the human folate receptor (26 aa) fused with myc tag (10 aa) and a *Pst*I fragment of the GPI anchor protein (28 aa) to generate pmeLUC.
- 5. The whole final construct is excised by a *Not*I/*Xho*I or *Xha*I digestion and cloned into a pcDNA3 expression vector. For this purpose, a ligation reaction is performed with recombinant DNA and expression vector with a stoichiometric balance of 3:1 (Fig. 2).
- 6. The ligation buffer is made with 2 μ l Buffer T4 ligase 10×, implemented with 1 μ l T4 DNA ligation enzyme (2 U/ μ l) reconstituted in deionized water up to 20 μ l to obtain the pmeLUC plasmid.
- 100 ng of plasmid DNA is used to transform one aliquot of Xl1-Blue *E. coli* competent cells by thermic shock: 42 °C for 45 s followed by 2 min on ice.

- 8. Thereafter, the bacterial cell suspension is cultured overnight at 37 °C in LB agar in the presence of $100 \ \mu g/ml$ ampicillin.
- 9. The day after, the bacterial cell suspension is precipitated by centrifugation at $3000 \times g$ for 20 min.
- 10. DNA is extracted with DNA extraction kit from Qiagen as per manufacturer instruction.
- 3.2 Cell Transfection
 1. Plate HEK293 (3×10⁶ cells/plate) into 10-cm tissue culture Petri dish 24 h before transfection. Rinse and add fresh DMEM F12 medium 4 h before transfection.
 - 2. Prepare tube 1 solution (DNA-Ca) as follows: add 50 μ l of CaCl₂ solution to 40 μ g pmeLUC-pcDNA3 plasmid resuspended in 450 μ l of aqueous (TE solution or DNAse/RNAse-free H₂O).
 - 3. Prepare tube 2 solution: 500 µl HBS-2X solution.
 - 4. Add the DNA-Ca solution (tube 1) dropwise with a Pasteur pipet to tube 2 and vortex immediately for a few seconds. Allow the precipitate to sit 30 min at room temperature.

3.3	Selection				
of Stably Transfected					
Cell	Clones				

3.4 In Vitro Validation of Transfected Cells by Immunofluorescence

- 5. Add the precipitate to the HEK293 cell culture plate, mix gently, and incubate overnight.
- The day after remove medium, wash cells twice with 10 ml of warm (37 °C) PBS, and add 10 ml of complete DMEM-F12. For stable transfection, allow HEK293 cells to double twice before plating in selection medium.
- 1. For stable transfection, the cell culture is supplemented with 0.8 mg/ml of the antibiotic G 418 three days after transfection and kept in its continuous presence for 2 weeks.
 - 2. Thereafter, positive clones are obtained by limiting dilution: 100 cells are resuspended in 10 ml of 0.2 mg/ml G418-supplemented DMEM-F12 medium; 100 μ l of this cell suspension are added to each well of a 96-well cell plate. Place the cell plate in a 5 % CO₂, humidified incubator at 37 °C.
 - 3. Check clones with a phase contrast microscope at 20× magnification after 5–6 days. Check each well and mark those well that contain only one colony.
 - 4. Transfer colonies to a T-25 culture flask in 0.2 mg/ml G418supplemented DMEM-F12 medium and wait for colony growth.
 - 1. 13 mm glass coverslips are placed into single wells of a 24 well culture plate.
 - 2. Add 200 μl of poly-L-lysine to each well for coverslip coating and incubate 1 h at room temperature.
 - 3. Rinse coverslips twice with sterile H₂O. Allow coverslips to dry completely and sterilize under UV light for at least 4 h.
 - 4. Plate 2×10^4 HEK293 pmeLUC cells onto each coverslip. Allow cells to adhere and fix with formaldehyde, 4 % in PBS, for 30 min.
 - 5. Rinse coverslips three times with PBS.
 - 6. Incubate coverslips for 30 min with 0.2 % gelatin in PBS to block nonspecific binding sites.
 - 7. Immunostaining is carried out for 1 h at 37 °C with a commercial monoclonal Sc-40 antibody against the c-myc epitope tag diluted at 1:100 in 0.2 % gelatin-supplemented PBS.
 - 8. Discharge the antibody solution, add fresh PBS, and incubate for 5 min. Repeat washing three times, for a total of 15 min.
 - 9. Immunodetection is carried out using Texas Red-conjugated goat anti-mouse IgG diluted 1:50 in PBS supplemented with 0.2 % gelatin. Leave the coverslips in this solution for 1 h at room temperature in the dark.

- 10. Discharge the secondary antibody, add fresh PBS, and incubate for 5 min. Repeat washing three times, for a total of 15 min.
- 11. After immunostaining, cells are mounted with a drop of Prolong Gold antifade reagent and analyzed with a fluorescence microscope at $60 \times$ or $100 \times$ magnifications, e.g., a Zeiss LSM 510 confocal microscope.
- 12. HEK293 cells, mock transfected with the empty pcDNA3 vector are used as a negative control.
 - 1. Resuspend 1×10⁶ HEK293-pmeLUC cells in 1 ml of PBS.
 - 2. Incubate HEK293-pmeLUC cells for 1 h at 4 °C with monoclonal Sc-40 antibody against the c-myc epitope tag diluted at 1:100.
 - 3. Rinse two times with cold PBS.
 - 4. Incubate cells at 4 °C for 1 h with a FITC-conjugated antimouse antibody at a 1:50 dilution in PBS. Protect from light.
 - 5. Rinse two times with cold PBS.
 - 6. Fix cells with 100 μl of 10× Cell Fix[™] diluted in 0.9 ml of cold PBS.
 - Acquire fluorescence with a flow cytometer (e.g., Becton Dickinson BD FACSscan), and analyze data with BD Cell Quest software. HEK293 cells, mock- transfected with the empty pcD-NA3vector, are used as a negative control (*see* Note 1).
 - 1. Seed 7×10^4 HEK293-pmeLUC cells into 12-well plates (Becton Dickinson Biosciences) in DMEM-F12 medium. Allow to adhere overnight in a 5 % CO₂, 37 °C, humidified incubator.
 - 2. The following day, add D-luciferin sodium salt (*see* item 3, Subheading 2.6) to each well (8 μ l, 120 μ g/well), and, 3 min later, start luminescence acquisition in a luminometer (e.g., IVIS 100). Set acquisition time and binning at 1 min/plate and 4, respectively.
 - 3. Build a calibration curve by consecutive additions of increasing (from 0.001 to 1 mM) ATP concentrations to one or more wells. Start a new acquisition after each ATP addition.
 - 4. As a control, add 5 U apyrase to one or more wells and start acquisition. Apyrase addition should cause a large luminescence decrease (*see* **Note 2**).
 - 5. A region of interest (ROI) is manually selected on each well. Keep the area of ROI constant and record the intensity as photons per seconds.

3.5 In Vitro Validation of Transfected Cells by FACS Analysis

3.6 Analysis of pmeLUC Expression and Function by In Vitro Luminescence Recording with a Total Body Luminometer

3.7 Analysis of pmeLUC Expression and Function by In Vitro Luminescence Recording with a Plate Reader Luminometer	 Plate the HEK293-pmeLUC cells as above. Add 8 μl of D-luciferin solution (<i>see</i> item 3, Subheading 2.6) to each well. Add increasing ATP concentrations solution to consecutive wells (calibration). Place the plate in the plate reader luminometer and start the acquisition. Set the counting time at 7 s/well. Triplicates are recommended. Record luminescence in counts per second (CPS) and express as function of ATP concentration.
3.8 In Vivo Analysis of Extracellular ATP	PmeLUC-transfected reporter cells can be used to monitor the extracellular ATP concentration in several experimental settings. In healthy mice, the extracellular ATP concentration is negligible, i.e., in the low nanomolar range, and therefore below pmeLUC detec- tion limit. Thus, best examples of extracellular ATP measurements by pmeLUC are given in experimental models of inflammation and cancer.
3.9 Measurement of Extracellular ATP Levels in a Model of Experimental Colitis Induced with Dextran Sulfate	 Inject mice (C57BI/6 or Balb/c) i.p. with 2×10⁶ HEK293- pmeLUC cells in 200 µl of DMEM-F12 the day before start- ing DSS administration to record basal peritoneal ATP levels. Gently massage the abdomen to allow pmeLUC cell distribu- tion throughout the peritoneum. Fifteen minutes later, inject each mouse i.p. with 150 mg/kg p-luciferin (3 mg/mouse) of p-luciferin-containing PBS in a final volume of 200 µl. Wait 15 min to allow luciferin distribu- tion throughout the mouse tissue. Anesthetize mice with isofluorane (2 % in 1 L/min oxygen). Place the animals (abdominal view) into a total body luminom- eter (e.g., IVIS 100 SystemTM). Set acquisition time and bin- ning at 3 min/acquisition and 4, respectively. Up to three mice each time can be acquired at the same time. For quantification select manually a region of interest (ROI) around peritoneum. Record ROI luminescence intensity as photons per seconds. Analyze data with the Living Image software. The day after, supplement mice drinking water with 5 % DSS (dextran sulfate solution) for at least 7 days. Feed control mice with regular, DSS-free, drinking water. Replace drinking water, with or without DSS, daily. Check mice wellness daily: measure body weight and inspect

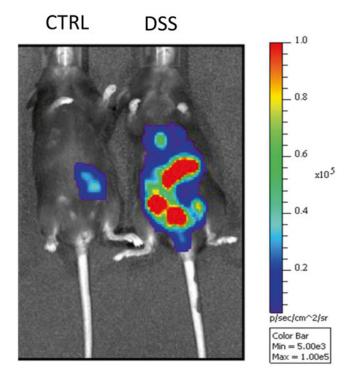
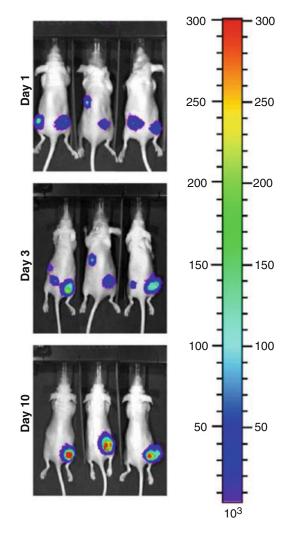


Fig. 3 Detection of experimental colitis by HEK293-pmeLUC cell inoculated i.p. in DSS-treated C57BI/6 mouse. Mouse on the right received DSS and HEK293-pmeLUC cells. Mouse on the *left* (control) received only HEK293-pmeLUC cells

- 12. Repeat steps 1–7 every 2 days for at least 10 days.
- Colitis shows as an increased luminescence emission of the colon (Fig. 3).
- 1. Resuspend 1.5×10^6 OVCAR-3 cells in 200 µl of RPMI.
- 2. Inject i.p. into *nude/nude* mice the OVCAR-3 cell suspension (200 μ l in each mouse) with a syringe fitted with a 27-gauge needle. A minimum of five mice is recommended.
- 3. Wait 20 days for tumor growth.
- 4. Inject i.p. in each mouse 2×10^6 HEK293-pmeLUC cells in 200 µl of DMEM-F12.
- Twenty-four hours later, i.p. inject each mouse with 200 µl of D-luciferin-containing PBS (150 mg/kg D-Luciferin, 3 mg/ mouse). Wait 15 min and anesthetize the mice with isofluorane (2 % in 1 L/min oxygen).
- 6. Place the animals (abdominal view) under continuous anesthesia into the IVIS 100[™] Luminometer. Set acquisition time and binning at 3 min/acquisition and 4, respectively. Up to three mice can be acquired at the same time.

3.10 Measurement of the ATP Content of the Tumor Microenvironment in a Model of Peritoneal OVCAR-3 Ovarian Carcinoma


- 7. Repeat steps 5 and 6 every 2 days for at least 16 days.
- 8. For quantification, select manually a region of interest (ROI) including the tumor area, and record ROI luminescence intensity as photons per seconds.
- 9. Analyze data with Living Image software (see Note 4).
- 10. Inoculate HEK293-pmeLUC cells into healthy *nude/nude* mice as a control (*see* **Note 5**).
- 1. Resuspend 8×10^6 MZ2-MEL cells in 200 µl of RPMI.
- 2. Inject into *nude/nude* mice the MZ2-MEL suspension i.p. $(200 \ \mu l \text{ in each mouse})$ with a syringe fitted with a 27-gauge needle. A minimum of five mice is recommended.
- 3. Inject the cell suspension subcutaneously (s.c.) in the right dorsal hip of each mouse with a syringe fitted with a 27-gauge needle.
- 4. Wait 10–15 days for tumor growth, or until tumor mass has reached a size of 1.5×1.5 cm.
- 5. Inject 2×10^6 HEK293-pmeLUC cells in 200 µl of DMEM-F12 into the tumor mass.
- 6. As a control, inject 2×10⁶ HEK293-pmeLUC cells into the contralateral (left) dorsal hip (healthy tissue) of each mouse.
- 7. Inject each mouse i.p. with 150 mg/kg D-luciferin (3 mg/ mouse).
- 8. Fifteen minutes after, anesthetize the mice with isofluorane (2 % in 1 L/min oxygen).
- 9. Place the animals (dorsal view) into the luminometer. Set acquisition time and binning at 3 min/acquisition and 4, respectively.
- 10. Up to three mice at the same time can be acquired.
- 11. Repeat steps 6 and 7 every 2 days for at least 10 days.
- 12. For quantification, select manually a region of interest (ROI) including the tumor area. Draw ROI with the same size area also on the left dorsal hip (healthy tissue is used as a negative control). Record ROI luminescence intensity as photons per seconds (Fig. 4).
- 13. Analyze data with Living Image software.

1. Induce a melanoma tumor as describe above (*see* Subheading 3.11).

2. When tumor mass has reached a size of 1.5×1.5 cm, inject 2×10^6 HEK293 pmeLUC cells (resuspended in 200 µl of DMEM-F12) into the tumor mass.

3.11 Measurement of the ATP Content of the Tumor Microenvironment in a Model of MZ2-MEL Melanoma

3.12 HEK293pmeLUC Cell Validation with Apyrase

Fig. 4 Detection of the ATP concentration in the microenvironment of MZ2-MEL tumor intra-mass injected with HEK293-pmeLUC cells (from Pellegatti et al., ref. 5)

- 3. Four days later, inject into the tumor mass 20 U of apyrase dissolved in 100 μ l of sterile PBS. Inject sterile PBS alone (vehicle) in control tumor-bearing mice.
- 4. Acquire and measure luminescence as described in Subheading 3.11.

4 Notes

1. To enhance plasma membrane expression of the pmeLUC construct, cells can be overnight incubated in the presence of 1 mM DTT, or kept at room temperature (21 °C) for 2 h

before immunostaining or luminescence recording. These treatments do not affect luciferase activity, and maximize pme-LUC surface expression by enhancing transport to the plasma membrane and slowing recycling.

- 2. Apyrase, a cell-impermeant ATP-hydrolyzing enzyme, is used as a control of the extracellular location of pmeLUC probe.
- 3. OVCAR-3 and MZ2-MEL cell lines are cultured in RPMI 1640 with L-glutamine, Na-pyruvate, and NaHCO₃ (Sigma Aldrich) supplemented with 10 % heat-inactivated FBS, 100 U/ml penicillin, and 100 μ g/ml streptomycin. Cells are cultured in Falcon T75 cell culture flasks and split once they reach 80–90 % confluence by treatment with 0.025 % Tripsin and 0.025 % EDTA in PBS buffer.
- 4. In tumor-bearing mice luminescence is very bright shortly after pmeLUC inoculation, because of the ATP-rich inflammatory environment within the peritoneal cavity. Then the signal progressively attenuates and localizes to discrete abdominal foci (metastases). Postmortem analysis and luminometry reveal numerous light-emitting metastasis on the abdominal wall. Moreover, histologic analysis of metastases with anti-luciferase Abs shows that HEK293 pmeLUC cells infiltrate tumor masses and report the ATP concentration in the tumor microenvironment.
- 5. Control mice: Healthy nude mice were injected i.p. with 2×10^6 HEK293 pmeLUC cells and monitored for 3 months. No significant luminescence emission can be detected over this extended time span. This underlines that in healthy tissue the ATP concentration in the extracellular environment is very low, certainly below the threshold for detection by HEK293 pmeLUC (1–5 μ M).

References

- 1. Wilson T, Hastings JW(1998) Bioluminescence. Annu Rev Cell Dev Biol 14:197–230
- Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4: 235–260
- 3. Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci U S A 96:13807–13812
- Pellegatti P, Falzoni S, Pinton P, Rizzuto R, Di Virgilio F (2005) A novel recombinant plasma

membrane-targeted luciferase reveals a new pathway for ATP secretion. Mol Biol Cell 16:3659–3665

- Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F (2008) Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One 3:e2599
- 6. Falzoni S, Donvito G, Di Virgilio F (2013) Detecting adenosine triphosphate in the pericellular space. Interface Focus 3:20120101
- 7. Wilhelm K, Ganesan J, Muller T, Durr C, Grimm M, Beilhack A et al (2010) Graft-

versus-host disease is enhanced by extracellular ATP activating P2X7R. Nat Med 16: 1434–1438

 Bianchi G, Vuerich M, Pellegatti P, Marimpietri D, Emionite L, Marigo I et al (2014) ATP/ P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment. Cell Death Dis 5, e1135

 Loo JM, Scherl A, Nguyen A, Man FY, Weinberg E, Zeng Z et al (2015) Extracellular metabolic energetics can promote cancer progression. Cell 160:393–406