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Abstract

Cerebral cavernous malformation (CCM) is a major cerebrovascular
disease affecting approximately 0.3–0.5% of the population and is
characterized by enlarged and leaky capillaries that predispose to
seizures, focal neurological deficits, and fatal intracerebral hemor-
rhages. Cerebral cavernous malformation is a genetic disease that
may arise sporadically or be inherited as an autosomal dominant
condition with incomplete penetrance and variable expressivity.
Causative loss-of-function mutations have been identified in three
genes, KRIT1 (CCM1), CCM2 (MGC4607), and PDCD10 (CCM3), which
occur in both sporadic and familial forms. Autophagy is a bulk
degradation process that maintains intracellular homeostasis and
that plays essential quality control functions within the cell.
Indeed, several studies have identified the association between
dysregulated autophagy and different human diseases. Here, we
show that the ablation of the KRIT1 gene strongly suppresses
autophagy, leading to the aberrant accumulation of the autophagy
adaptor p62/SQSTM1, defective quality control systems, and
increased intracellular stress. KRIT1 loss-of-function activates the
mTOR-ULK1 pathway, which is a master regulator of autophagy,
and treatment with mTOR inhibitors rescues some of the mole-
cular and cellular phenotypes associated with CCM. Insufficient
autophagy is also evident in CCM2-silenced human endothelial
cells and in both cells and tissues from an endothelial-specific
CCM3-knockout mouse model, as well as in human CCM lesions.
Furthermore, defective autophagy is highly correlated to endothe-
lial-to-mesenchymal transition, a crucial event that contributes to
CCM progression. Taken together, our data point to a key role for
defective autophagy in CCM disease pathogenesis, thus providing a
novel framework for the development of new pharmacological

strategies to prevent or reverse adverse clinical outcomes of CCM
lesions.
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Introduction

Cerebral cavernous malformations (CCMs; OMIM 116860), which

are also known as cavernous angiomas or cavernomas, are major

vascular malformations consisting of closely clustered, abnormally

dilated, and leaky capillary channels (caverns) lined by a thin

endothelium and devoid of normal vessel structural components

(Clatterbuck et al, 2001; Gault et al, 2004; Batra et al, 2009;

Cavalcanti et al, 2012).

Cerebral cavernous malformation lesions are estimated to occur

in 0.3–0.5% of the general population (Cavalcanti et al, 2012) and

can either remain clinically silent or cause serious clinical symp-

toms, such as headaches, neurological deficits, seizures, strokes,

and intracerebral hemorrhages (Gault et al, 2004; Batra et al, 2009).

Approximately 30% of people with CCM lesions will eventually

develop clinical symptoms.

Cerebral cavernous malformation has a known genetic origin

and may either arise sporadically or be inherited as an autosomal

dominant condition with incomplete penetrance and variable
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expressivity. Genetic studies have identified three genes whose

loss-of-function mutations cause CCM: KRIT1 (CCM1), MGC4607

(CCM2), and PDCD10 (CCM3), which account for approximately 50,

20, and 10% of CCM cases, respectively. The remaining 20% of

cases have been attributed to mutations in a fourth unidentified

CCM gene (Riant et al, 2010). Notably, the hereditary form of this

illness is often associated with multiple cavernous angiomas,

whereas the sporadic form typically presents as a solitary lesion.

At present, no direct therapeutic approaches for CCM disease

exist other than the surgical removal of accessible lesions in patients

with recurrent hemorrhage or intractable seizures. In particular,

novel pharmacological strategies are required for preventing the

de novo formation of CCM lesions in susceptible individuals and the

progression of the disease. Useful insights into the definition of

novel approaches for CCM disease prevention and treatment could

be derived from a deep understanding of the mechanisms underly-

ing CCM pathogenesis.

Macroautophagy (termed autophagy in this manuscript) is a bulk

degradation process that occurs in two primary steps: (i) the seques-

tration of proteins and organelles into double-membrane vesicles

called autophagosomes and (ii) their subsequent degradation

through the fusion of autophagosomes with lysosomes (Xie &

Klionsky, 2007; Feng et al, 2014). By selectively degrading harmful

protein aggregates or damaged organelles, autophagy maintains

intracellular homeostasis and plays essential quality control func-

tions within the cell (Mizushima & Komatsu, 2011).

Defective autophagy occurs in several pathological conditions,

including cancers, neurodegenerative and cardiovascular diseases,

and metabolic disorders (Levine & Kroemer, 2008; Choi et al, 2013).

The suppression of autophagy causes the accumulation of proteins

and potentially hazardous intracellular structures, thereby inducing

high levels of metabolic stress and limiting organelle functionality.

Consequently, using a pharmacological approach to re-establish

physiological levels of autophagy may be beneficial in treating

certain diseases. Nevertheless, several clinical trials are currently

based on the employment of agents acting on autophagy induction

(Choi et al, 2013; Jiang & Mizushima, 2014).

In the present study, we show that human CCM lesions display

increased levels of p62/SQSTM1, an autophagic marker that accu-

mulates when autophagy is inhibited, and demonstrate that both

KRIT1 and CCM3 loss-of-function impair autophagy through the up-

regulation of the mechanistic target of rapamycin (mTOR) pathway,

leading to a defective quality control system and the accumulation

of aberrant and aggregated proteins. Our data raise the possibility

that therapeutic activation of autophagy might prevent or reverse

adverse clinical outcomes, thus improving the long-term prognosis

of CCM patients.

Results and Discussion

KRIT1 deletion suppresses autophagy

To study the contribution of autophagy to CCM pathogenesis, we

investigated whether KRIT1 down-regulation would lead to the

impairment of autophagy in endothelial cell lines.

Endothelial-specific KRIT1 knockout (KO) in mice produced

lesions that were identical to the CCM malformations observed in

humans (Boulday et al, 2011; Maddaluno et al, 2013). We used

KRIT1-KO lung endothelial cells derived from KRIT1fl/fl mice treated

with Tat-Cre recombinase (Maddaluno et al, 2013).

p62/SQSTM1 acts as a receptor for ubiquitinated cargoes and

delivers them to the autophagosome, and p62 itself is incorporated

into the autophagosome and subsequently degraded by autophagy

(Komatsu et al, 2007). The autophagy protein microtubule-associ-

ated protein 1 light chain 3 (LC3) is present in the cytosol in the

LC3-I form, until it is modified to a cleaved and lipidated

membrane-bound form (LC3-II), which is localized to autophago-

somes. Thus, in addition to p62 accumulation, another typical trait

of autophagy inhibition consists of increased amounts of the cytoso-

lic non-lipidated form of LC3 (LC3-I) and of total LC3 (Mizushima

et al, 2010; Wang et al, 2012). As shown in Fig 1A, KRIT1 defi-

ciency was associated with defective autophagy, displaying

increased levels of p62 and total LC3.

Upon autophagy inhibition, p62 has been reported to be present

in several types of cytoplasmic inclusions and to display a typical

punctate pattern (Bjorkoy et al, 2005). Importantly, analysis of p62

distribution through immunofluorescence staining revealed a

nuclear-enriched pattern with rare cytoplasmic dots in ~60% of

KRIT1 wild-type (wt) cells. Conversely, in KO endothelial cells, the

protein is primarily cytoplasmatic, forming intense perinuclear

bodies with weak staining in the nucleus (Fig 1B).

To investigate whether defective autophagy in CCM is a cell-

autonomous process, we took advantage of KRIT1 KO (KRIT1-KO)

mouse embryonic fibroblasts (MEFs), a previously established and

characterized cellular model that allowed the identification of new

molecules and mechanisms involved in CCM pathogenesis (Goitre

et al, 2010, 2014), providing novel therapeutic perspectives (Gibson

et al, 2015; Moglia et al, 2015). Compared with KRIT1-KO MEFs re-

expressing KRIT1 (Fig 1C; KO+KRIT1), KRIT1-KO MEFs (Fig 1C;

KO) displayed increased levels of p62 as well as significantly

increased levels of total LC3 protein (Fig 1C). Moreover, immunos-

taining analysis revealed that KRIT1 depletion led to increases in the

number of p62-containing bodies (Fig 1D), with diameters of

approximately 1.5 lm.

Next, we examined whether KRIT1 ablation also inhibits autoph-

agy in human cells. The silencing of KRIT1 suppressed autophagy in

both the human cerebral microvascular endothelial cell line hBMEC

(Fig 1E) and the human umbilical vein cell line EA.hy926 (Fig 1F),

as evidenced by increased p62 and LC3 accumulation.

p62 protein expression is highly regulated at the transcriptional

level via the JNK pathway (Puissant et al, 2010) or the NRF2 tran-

scription factor, particularly under oxidative stress (He & Klionsky,

2009; Puissant et al, 2012). Considering that KRIT1 is involved in

reactive oxygen species (ROS) homeostasis (Goitre et al, 2010,

2014; Jung et al, 2014), we tested whether p62 accumulation in

KRIT1-KO cells was associated with autophagy inhibition rather

than with ROS-dependent transcriptional effects. As expected, treat-

ment with the antioxidant N-acetylcysteine (NAC) decreased p62

levels, but the disruption of KRIT1 still induced p62 accumulation

(Appendix Fig S1A). Moreover, similar results were obtained using

the protein synthesis inhibitor cycloheximide (CHX) (Appendix Fig

S1B), further supporting the notion that the inhibition of autophagy-

dependent protein turnover upon KRIT1 loss contributes to p62

accumulation. Consistently, no differences in p62 mRNA levels

between wt and KRIT1-KO endothelial cells have been detected
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Figure 1.
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(Appendix Fig S1C). Importantly, when autophagy-mediated degra-

dation is inhibited, p62 appears to be partially detergent insoluble

(Klionsky et al, 2012); therefore, the lysates were divided between

Triton X-100 (TX-100)-soluble and TX-100-insoluble fractions and

subsequently analyzed for their protein content. The loss of KRIT1

in both endothelial cells (Appendix Fig S1D) and MEFs (Appendix

Fig S1E) promoted increased levels of p62 in both the soluble and

insoluble fractions, which is consistent with previous observations

made under defective autophagy and high protein aggregation

conditions (Waguri & Komatsu, 2009; Fujita et al, 2011; Magnaudeix

et al, 2013).

Autophagy is responsible for the degradation of large structures

such as organelles and protein aggregates (Rabinowitz & White, 2010;

Cheng et al, 2013). Consequently, we analyzed whether the defective

autophagy observed upon KRIT1 loss might induce the accumulation

of aggresome-like structures. As shown in Fig 1G, we observed

greater colocalization between p62 and aggresomes in endothelial

KRIT1-KO cells, as well as extremely high fluorescence intensity of

aggresome-like inclusion bodies. The same results have been obtained

in different cellular systems, such as MEFs (Fig 1H) or KRIT1-silenced

hBMECs and EA.hy926 cells (Appendix Fig S1F and G), indicating that

the loss of KRIT1 promotes the accumulation of aberrant proteins that

could be reasonably ascribed to defective autophagy. Virtually iden-

tical observations have been reported for other autophagy-deficient

scenarios (Maejima et al, 2013; Wolf et al, 2013).

These findings suggest that KRIT1 ablation is sufficient to

suppress autophagy in a cell-autonomous manner. Indeed, KRIT1

silencing or disruption in four different cellular contexts has been

shown to result in the expression of typical markers of defective

autophagy, such as increased accumulation of p62 and increased

amounts of LC3-I and of total LC3.

KRIT1 deletion induces up-regulation of the mTOR-ULK1 pathway

The mTOR signaling network is recognized as the most important

regulator of autophagy, and its implication in a wide range of

diseases has been largely documented (Laplante & Sabatini, 2012).

Direct selective inhibition of mTOR, through the allosteric inhibitor

rapamycin or the small molecule ATP-competitive inhibitor Torin1,

induces autophagy in many cell types (Kundu, 2011). Consequently,

we tested whether the defective autophagy observed upon KRIT1

deletion resulted from dysregulation of the mTOR pathway.

Immunoblot analysis revealed marked up-regulation of mTOR

signaling in KRIT1-KO endothelial cells, as evidenced by the

increased phosphorylation of both mTOR and its downstream

targets p70S6k and 4E-BP1 (Fig 2A). Importantly, treatment with

Torin1 suppressed mTOR activation even in KO cells, suggesting

that a pharmacological approach based on mTOR inhibition might

re-activate autophagy in these cells.

Among the different targets of mTOR, ULK1, the mammalian

homolog of yeast ATG1, is deeply involved in the regulation of

autophagy through its interactions with several autophagy-related

proteins (Wong et al, 2013). For example, ULK1-deficient mice

display suppressed autophagy (Hara et al, 2008; Kundu et al, 2008).

mTOR phosphorylates ULK1 at Ser 757 to inhibit autophagy (Kim

et al, 2011). Notably, mTOR exerts a further restriction on autoph-

agy by indirectly inhibiting ULK1 activity and stability (Nazio et al,

2013).

In our study, endothelial KRIT1 ablation significantly decreased

the baseline levels of ULK1 and inhibition of mTOR by Torin1 treat-

ment increased the total amounts of ULK1 protein (Fig 2B), indicat-

ing that reduced ULK1 levels in KRIT1-KO endothelial cells might be

dependent on higher mTOR activity. Indeed, impaired ULK1 stabi-

lization and activity occur when the autophagy regulator AMBRA1

is highly phosphorylated by mTOR kinase at position 52 (Nazio

et al, 2013). As shown in Appendix Fig S2A, AMBRA1 phosphoryla-

tion at Serine 52 is more abundant upon KRIT1 deletion compared

to wt endothelial cells.

Then, we tested the efficacy of mTOR inhibition for reinstating

autophagy under KRIT1 depletion. As evidenced by the increased

LC3 I/II ratios and reduced p62 levels, both rapamycin and Torin1

effectively activated autophagy (Fig 2C).

Figure 1. KRIT1-ablated cells display autophagy suppression.

A Immunoblot analysis of p62 and LC3 I/II in KRIT1 wt and KRIT1-KO endothelial cells. Actin was used as a loading control. Quantification of total LC3 on actin is
reported (*P = 0.02712). The results are representative of three independent experiments.

B Representative images of p62 dots in KRIT1 wt and KRIT1-KO endothelial cells. Scale bar, 20 lm. Magnifications in insets. Right, quantitative analysis of p62
distribution of dots is reported (four independent experiments; n = 35 cells per group). *P = 0.00542 (dotted); *P = 0.00014 (nuclear).

C Immunoblot analysis of p62 and LC3 I/II in KRIT1-KO and KRIT1-KO re-expressing KRIT1 (KO+KRIT1) MEFs. Left, immunoblot showing KRIT1 levels in KRIT1-KO and
KO+KRIT1 cells. Right, immunoblots for p62 and LC3 I/II. Actin was used as a loading marker. Quantification of total LC3 on actin is reported (*P = 0.01248). The
results are representative of three independent experiments.

D Representative images of p62 dots in KO+KRIT1 (top) and KRIT1-KO cells (bottom). Scale bar, 50 lm. Magnifications in insets. Right, quantitative analysis of the
number of p62 dots per cell is shown (four independent experiments; n = 50 cells per group). *P = 7.18e�14.

E Immunoblot analysis of hBMECs transiently transfected with control siRNA or KRIT1 siRNA. Left, evaluation of siRNA efficiency with antibody directed against KRIT1.
Right, immunoblots for p62 and LC3 I/II. Actin was used as a loading marker. Quantification of total LC3 on actin is reported (*P = 0.03071). The results are
representative of three independent experiments.

F Immunoblot analysis of EA.hy926 cells transiently transfected with control siRNA or KRIT1 siRNA. Left, evaluation of siRNA efficiency with antibody directed against
KRIT1. Right, immunoblot for p62 and LC3 I/II. Actin was used as a loading marker. Quantification of total LC3 on actin is reported (*P = 0.02527). The results are
representative of three independent experiments.

G Immunofluorescence analysis of p62 (green) and ProteoStat Aggresome staining detection reagent (red) in KRIT1 wt and KRIT1-KO lung endothelial cells. The yellow
signal in the merged images represents an overlapping spatial relationship between green and red fluorescence. Magnification in insets. Scale bar, 50 lm. The images
are representative of four independent experiments.

H Immunofluorescence analysis of p62 (green) and ProteoStat Aggresome staining detection reagent (red) in KRIT1-KO re-expressing KRIT1 (KO+KRIT1) and KRIT1-KO
MEFs. The yellow signal in the merged images represents an overlapping spatial relationship between green and red fluorescence. Magnification in insets. Scale bar,
50 lm. The images are representative of four independent experiments.

Source data are available online for this figure.
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Next, we investigated mTOR activity in KRIT1-depleted MEFs.

The autophagy defects observed in KRIT1-KO cells could be attrib-

uted to alterations of the mTOR-ULK1 pathway (Fig 2D and E). In

this case, we observed only a slight decrease in ULK1 expression in

KRIT1-KO MEFs; however, mTOR-dependent phosphorylation of

endogenous ULK1 at Ser 757 was increased (Fig 2E and Appendix

Fig S2B), indicating that mTOR might control ULK1 activity primar-

ily by direct phosphorylation in this cellular context.

Interestingly, we observed a significant increase in the total

amount of mTOR in both KRIT1-KO endothelial cells and fibroblasts

(Fig 2A and D and Appendix Fig S2B), which might reasonably

affect the totality of active mTOR.

The use of rapamycin and mTOR kinase inhibitors significantly

re-established autophagy (Fig 2F). Importantly, the induction of

autophagy was more robust in Torin1-treated cells, as evidenced by

the greater inhibition of the mTOR pathway by Torin1 (Appendix

Fig S2B). Consistently, Torin1, which is known to inhibit equally

the two mTOR functional complexes (mTORC1 and mTORC2), has

been reported to be more effective than rapamycin in inhibiting

mTORC1, as well as to activate autophagy to a greater extent than

rapamycin independently of its putative action on mTORC2

(Thoreen et al, 2009). Therefore, the efficacy of Torin1 treatment to

drive autophagy even in KRIT1-KO cells might be likely attributable

to its greater effect on autophagy, as compared with rapamycin.

One of the most useful methods for measuring autophagy is based

on the mRFP-GFP-LC3 tandem construct assay (Mizushima et al,

2010). In cells expressing mRFP-GFP-LC3, the association of LC3

with autophagosomes can be visualized as yellow puncta due to the

merge of green and red, whereas autolysosomes are detected as red

puncta because the green fluorescence is quenched by the acidic pH

of the lysosomal environment. Thus, if autophagic flux increases

(i.e., upon pro-autophagic stimuli), the number of LC3 puncta

increases, with a higher number of red puncta than the number of

yellow puncta; conversely, when autophagic flux is impaired, only

yellow puncta increase without a concomitant increase in red puncta.

Both Torin1 and xestospongin B, a mTOR-independent stimulus

that induces autophagy by disrupting the molecular complex

between inositol 1,4,5-trisphosphate receptor (IP3R) and Beclin-1

(Rubinsztein et al, 2012), activated autophagic flux in wt endothe-

lial cells, whereas only Torin1 re-activated autophagy in KO cells

(Fig 2G). Similar results were obtained in KRIT1-KO MEFs (Fig 2H).

Notably, KO MEFs also displayed autophagy inhibition at the later

stages of the process. This result might be related to the dual

suppressive role played by mTOR, which inhibits autophagy not

only at the initiation stage via suppression of the ULK1 complex but

also at the degradation stage via inhibition of lysosomal function

(Zhou et al, 2013a,b). Furthermore, the analysis of the lysosomal

compartment through the transfection of GFP-tagged lysosomal-

associated membrane protein (LAMP1-GFP) revealed the accumula-

tion of clustered lysosomes in KO cells, displaying a morphological

pattern similar to that of KRIT1-expressing cells that had been

treated with the lysosomal inhibitor bafilomycin A1 (Appendix

Fig S2C).

KRIT1 loss-of-function leads to enhanced levels of intracellular

ROS (Goitre et al, 2010; Jung et al, 2014) and cell proliferation (Mad-

daluno et al, 2013). Thus, we verified whether autophagy induction

counteracts those KRIT1-dependent pathological processes.

Measurements of hydrogen peroxide production using the ratiomet-

ric mitochondria-targeted HyPer probe (mt-HyPer) showed that

Torin1 treatment of KO cells markedly reduced baseline ROS levels

(Appendix Fig S3A). Importantly, the use of antioxidants such as

NAC or Tempol did not affect the mTOR signaling over-activation

observed in KRIT1-KO cells (Appendix Fig S3B); accordingly, ROS

scavengers failed to trigger autophagy in KO cells (Appendix Fig

S3C), suggesting that ROS accumulation is a consequence of mTOR

activity and not vice versa. Furthermore, mTOR inhibitors strongly

attenuated the proliferative rate of both KRIT1-KO endothelial cells

and MEFs (Appendix Fig S3D and E).

Overall, these data suggest that KRIT1 loss inhibits autophagy

through the up-regulation of the mTOR pathway and that the

Figure 2. KRIT1 loss-of-function activates the mTOR-ULK1 pathway.

A Immunoblot analysis with antibodies directed against phosphorylated mTOR (Ser 2448), total mTOR, phosphorylated p70 S6 Kinase (Ser 371), total p70 S6 Kinase,
phosphorylated 4E-BP1 (Thr 37/46), and total 4E-BP1; actin was used as a loading marker. Where indicated, KRIT1 wt and KRIT1-KO endothelial cells were treated
with 100 nM Torin1 for 4 h. The results are representative of three independent experiments.

B Immunoblot analysis of total ULK1 and actin in KRIT1 wt and KRIT1-KO endothelial cells. Where indicated, cells were treated with 100 nM Torin1 for 4 h. The results
are representative of three independent experiments.

C Immunoblot analysis of p62, LC3 I/II, and actin in KRIT1 wt and KRIT1-KO endothelial cells treated with 100 nM Torin1 or 500 nM rapamycin for 4 h. The results are
representative of three independent experiments.

D Immunoblot analysis with antibodies directed against phosphorylated mTOR (Ser 2448), total mTOR, phosphorylated p70 S6 Kinase (Ser 371), total p70 S6 Kinase,
phosphorylated 4E-BP1 (Thr 37/46), and total 4E-BP1; actin was used as a loading marker. Where indicated, KRIT1-KO re-expressing KRIT1 (KO+KRIT1) and KRIT1-KO
MEFs were treated with 100 nM Torin1 for 4 h. The results are representative of three independent experiments.

E Immunoblot analysis of phosphorylated ULK1 (Ser 757), total ULK1, and actin in KRIT1 KO+KRIT1, and KRIT1 KO MEFs. Where indicated, cells were treated with
100 nM Torin1 for 4 h. The results are representative of three independent experiments.

F Immunoblot analysis of p62, actin, LC3 I/II in KO+KRIT1 and KRIT1-KO cells. Where indicated, cells were treated with 100 nM Torin1 for 4 h or 500 nM rapamycin for
4 h. The results are representative of three independent experiments.

G KRIT1 wt and KRIT1-KO endothelial cells were transiently transfected with mRFP-GFP-LC3. Where indicated, the cells were treated with 100 nM Torin1 for 4 h or
2 lM xestospongin B for 4 h. The differences in the autophagic flux were evaluated by counting the yellow LC3 I/II dots/cell (RFP+GFP+) and red LC3 dots/cell
(RFP+GFP�) for each condition. Yellow dots: autophagosomes; red dots: autophagolysosomes. *P = 5.74e�5 (red dots, WT ctrl vs. WT Tor1); *P = 9.62e�5 (red dots, WT
ctrl vs. WT xesto); *P = 0.00727 (red dots, WT ctrl vs. KO ctrl); #P = 0.00046 (red dots, KO ctrl vs. KO Tor1). The data are expressed as the mean � s.e.m.

H KO+KRIT1 and KRIT1-KO MEFs were transiently transfected with the mRFP-GFP-LC3 tandem construct. Where indicated, the cells were treated with 100 nM Torin1
for 4 h or 2 lM xestospongin B for 4 h. The differences in the autophagic flux were evaluated by counting the yellow LC3 I/II dots/cell (RFP+GFP+) and red LC3
dots/cell (RFP+GFP�) for each condition. Yellow dots: autophagosomes; red dots: autophagolysosomes. *P = 0.00023 (red dots, KO+KRIT1 ctrl vs. KO+KRIT1 Tor1);
*P = 0.00045 (red dots, KO+KRIT1 ctrl vs. KO+KRIT1 xesto); #P = 3.08e�6 (red dots, KO ctrl vs. KO Tor1); ##P = 6.73e�5 (yellow dots, KO+KRIT1 ctrl vs. KO ctrl). The data
are expressed as the mean � s.e.m. of four independent experiments.

Source data are available online for this figure.
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restoration of autophagy by mTOR inhibitors could significantly miti-

gate the metabolic disorders resulting from KRIT1 loss-of-function.

Defective autophagy underlies major phenotypic signatures of
CCM disease

To further clarify whether defective autophagy is involved in the

pathogenesis of CCM, we investigated the relationship between

autophagy and endothelial-to-mesenchymal transition (EndMt), a

pathological signature that contributes to CCM progression

(Maddaluno et al, 2013). KRIT1-KO endothelial cells displayed

higher expression of typical markers that are associated with EndMt,

such as PAI1 (also known as Serpine1), Cd44, and Id1 (Fig 3A).

Both Torin1 and rapamycin treatments inhibited the EndMt switch

by lowering the expression of mesenchymal markers (Fig 3A) and

by increasing the levels of key endothelial markers such as CD31

(also known as Pecam-1) and vascular endothelial cadherin

(VE-cadherin) (Fig 3B).

Down-regulation of the essential autophagy-related gene ATG7 in

human umbilical vein endothelial cells (HUVECs) suppressed

autophagy (Appendix Fig S4A) and was associated with changes in

the expression of markers of EndMt, such as a decrease in endothe-

lial markers (CD31 and VE-cadherin) and a complementary increase

in mesenchymal markers (N-cadherin and alpha-SMA; Fig 3C).

Moreover, ATG7 silencing in HUVECs slowed the formation of

capillary-like structures (Fig 3D) but significantly increased the

migratory capacity of these cells (Appendix Fig S4B). Importantly,

inhibition of mTOR signaling reduced the migration of KRIT1-KO

endothelial cells (Appendix Fig S4C and D). These data are consis-

tent with recent observations (Zhang et al, 2013; Singh et al, 2015),

translating the association between mTOR-dependent inhibition of

autophagy and EndMt to CCM disease.

Intriguingly, a key role for p62 in the regulation of epithelial–

mesenchymal transition has been recently reported (Bertrand et al,

2015), prompting us to investigate whether this concept could be

extended to EndMt. Consistently, p62 down-regulation in KRIT1-

ablated endothelial cells significantly lowered the expression of

mesenchymal markers such as PAI1, Cd44, and Id1 (Appendix

Fig S4E), further supporting the existence of a significant correlation

between EndMt and autophagy in CCM.

Because mutations in any of the three CCM genes lead to the

onset of similar pathological signatures, the three CCM proteins

likely share a common mechanism of action. Therefore, we exam-

ined the role of autophagy in CCM3-depleted endothelial cells

derived from Ccm3fl/fl mice (Bravi et al, 2015). Similar to KRIT1

down-regulation, we observed autophagy inhibition upon CCM3

ablation, which could be re-activated by treatment with mTOR inhi-

bitors (Fig 3E). Importantly, CCM3-KO endothelial cells displayed

mTOR-ULK1 pathway up-regulation (Appendix Fig S4F).

To confirm the data observed in vitro, we analyzed whether autoph-

agy inhibition also occurred in vivo upon CCM3 ablation. As in patients

with CCM (Labauge et al, 2007), an inducible and endothelial-specific

CCM3-KO mouse model (CCM3-ECKO) presented venous malforma-

tions at the periphery of the retinal vascular plexus. We found that p62

strongly accumulated in the endothelial cells that formed the vascular

malformations (Fig 3F and Appendix Fig S4G). Moreover, an analysis

of murine CCM3-KO brain sections showed p62 clusters in the

surrounding area of vascular malformations (Fig 3G).

To complete the analysis of all three CCM genes, we investigated

the effect of CCM2 down-regulation in human endothelial cells on

autophagy. CCM2 silencing in EA.hy926 cells (Appendix Fig S5A)

induced p62 accumulation, as well as increased levels of LC3-I and

LC3-II (Appendix Fig S5B). Moreover, immunofluorescence staining

showed a punctate pattern of p62 and the accumulation of aggre-

somes (Appendix Fig S5C). These autophagy defects could be related

to mTOR pathway hyperactivation (Appendix Fig S5D and E).

Our findings suggest that defective autophagy and consequent

p62 accumulation are common features of loss-of-function muta-

tions of the three known CCM genes.

Enhanced p62 accumulation occurs in endothelial cells lining in
human CCM lesions

To examine the clinical relevance of our findings in cellular

and animal models of CCM disease, we analyzed p62 expression

in human CCM lesions. Indeed, p62 accumulates in several

Figure 3. Defective autophagy underlies major phenotypic signatures of CCM disease.

A Cd44, PAI1 (also known as Serpine1), and Id1 mRNA expression levels in KRIT1 wt and KRIT1-KO endothelial cells were assessed by quantitative real-time PCR. Where
indicated, KRIT1 wt and KRIT1-KO endothelial cells were treated with 100 nM Torin1 or 500 nM rapamycin for 16h. The data are expressed as the mean � s.e.m.
Cd44: *P = 0.02848 (KO ctrl vs. KO Rapa); *P = 0.02605 (KO ctrl vs. KO Tor1). PAI1: *P = 0.04446 (KO ctrl vs. KO Rapa); *P = 0.03996 (KO ctrl vs. KO Tor1). Id1:
*P = 0.00266 (KO ctrl vs. KO Rapa); *P = 0.01554 (KO ctrl vs. KO Tor1). n = 3 independent experiments.

B Immunoblot analysis of CD31/Pecam-1, vascular endothelial cadherin (VE-cadherin), and actin in KRIT1-KO endothelial cells that were treated with 100 nM Torin1 or
500 nM rapamycin for 24 h. The results are representative of three independent experiments.

C Immunoblot analysis of CD31/Pecam-1, vascular endothelial cadherin (VE-cadherin), N-cadherin, alpha-smooth muscle actin (alpha-SMA), and actin in HUVECs
transfected with control siRNA or ATG7 siRNA.

D Formation of capillary-like structures measured by tube formation assays. HUVECs were transfected with control siRNA or ATG7 siRNA for 72 h. Representative phase-
contrast (Scale bar, 100 lm) and calcein-fluorescent (Scale bar, 50 lm) images were reported. All data are presented as percentage � s.e.m from three different
experiments performed in duplicate. *P = 1.29e�11.

E Immunoblot analysis of p62, LC3 I/II, and actin in CCM3 wt and CCM3-KO endothelial cells treated with 100 nM Torin1 or 500 nM rapamycin for 4 h. The results are
representative of three independent experiments.

F Representative immunostaining of retina sections from wt and a model of inducible and endothelial-specific CCM3-KO (CCM3-ECKO) at postnatal day 14.
Endothelium was stained with isolectin B4 (ISOB4) (blue). A, artery; V, vein. p62 aggregates can be observed in endothelial cells forming retinal lesions in CCM3-ECKO
animals (scale bar: 200 lm). Scale bar of magnifications: 100 lm.

G Representative immunostaining of brain sections from wt and a model of inducible and endothelial-specific CCM3-knockout mice (CCM3-ECKO) at postnatal day 9.
p62 aggregates can be observed in the proximity of CCM lesions (arrows). Cell nuclei (DAPI) are in blue. Scale bar, 30 lm. Smaller panel shows the magnifications of
blood vessels (green). Scale bar, 10 lm.

Source data are available online for this figure.
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autophagy-deficient mouse tissues (Zatloukal et al, 2002; Martinet

et al, 2013) and represents a reliable marker for tissues with

reduced autophagic activity (Waguri & Komatsu, 2009).

Histological samples of human CCM lesions were obtained from

archived paraffin-embedded surgically resected CCM specimens,

and p62 levels were evaluated by immunohistochemical studies.

The analysis of CCM specimens from 10 cases with confirmed diag-

nosis of CCM by both neuroradiological and histopathological analy-

ses revealed enhanced staining intensity for p62 in endothelial cells

lining CCM lesions (Appendix Table S1). Representative immuno-

histochemical results for the selected cases are shown in Fig 4.

While normal brain vascular endothelium deriving from autoptic

samples showed negative staining for p62 (Fig 4A and B), either

moderate (Fig 4C and D) or marked (Fig 4E and F) “pearl necklace-

like” endothelial staining for p62 was observed in the ten CCM cases

analyzed (Fig 4C–F and Appendix Table S1). Intriguingly, a putative

association between marked p62 accumulation and the multiple

CCM lesion phenotype was also observed (Appendix Table S1),

which deserves further investigation in larger samples for valida-

tion. Notably, in one of the eight tissue samples that displayed

marked positive p62 staining in CCM lesions, typical normal vessels

surrounding the lesion were also present and stained negative for

p62, resulting in an internal negative control (Fig 4G–I).

Taken together, these data demonstrate that p62 accumulates in

endothelial cells lining CCM brain lesions, supporting the clinical

relevance of defective autophagy in CCM disease.

In conclusion, we identified a key role for autophagy inhibition

in CCM pathogenesis and suggest the utilization of mTOR inhibitors,

which are currently used in several clinical trials, including the

treatment of complicated vascular anomalies (Lackner et al, 2015),

as a promising therapeutic approach for treating CCM disease.

Recent observations regarding the role of mTOR in arteriovenous

malformations (Kawasaki et al, 2014), the higher number and tortu-

osity of tumor microvessels in Atg5EC-KO mice carrying an endothe-

lial cell-specific deletion of the autophagy-related gene Atg5 (Maes

et al, 2014), and the involvement of autophagy in CCM3-dependent

senescence induction (Guerrero et al, 2015) provide further support

to our data, strengthening the original finding that CCM is an autoph-

agy-related disease.

Materials and Methods

Immunoblotting

For immunoblotting, cells were scraped into ice-cold, phosphate-

buffered saline (PBS) and lysed in a buffer containing 50 mM Tris

G

Peri-Lesion

Lesion

A

C

E

B

D

F

H

I

Figure 4. Accumulation of p62 in endothelial cells lining human CCM
lesions.
p62 immunohistochemical (IHC) staining in human brain tissue.

A, B Normal vascular endothelium of autoptic brain parenchyma samples is
lacking the typical autophagic p62 granules as shown by the negative
staining for p62. Scale bars: (A) 200 lm; (B) 100 lm.

C–F Two different representative samples of CCM lesions with a thin, single
layer brain endothelium displaying either moderate (C, D) or marked (E,
F) positive perinuclear “pearl necklace-like” immunostaining for p62
granules. (C, D), case n° 4 (p62++), and (E, F), case n° 8 (p62+++) are
representative of CCM cases listed in Appendix Table S1. Scale bars: (C, E)
200 lm; (D, F) 100 lm. Arrows indicate endothelial p62 positive staining.

G–I Hematoxylin and eosin (H&E) staining (G) and p62 immunohistochemical
analysis (H, I) of a CCM surgical sample (case n° 6 in Appendix Table S1)
containing normal vessels in the peri-lesional area, which served as an
internal control. Notice marked p62-positive staining in endothelial cells
lining a CCM lesion (H, arrows) and p62-negative staining in endothelial
cells lining a normal peri-lesional vessel (I, arrows). Scale bars: (G)
300 lm; (H, I) 100 lm. Background staining in brain parenchyma
surrounding CCM lesions may be attributed to either cell debris or p62
immunoreactivity in neuronal and glial cells.
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HCl pH 7.4, 150 mM NaCl, 1% Triton X-100, 0.2% SDS, protease,

and phosphates inhibitor cocktail. After 30 min of incubation on ice

and centrifugation at 2,500 rpm 4°C for 5 min, proteins were quan-

tified by the Lowry method and 10 lg of each sample were loaded

on a Novex NuPage Bis-Tris 4–12% precast gel (Life Technologies)

and transferred to PVDF membranes. After incubation with TBS–

Tween-20 (0.05%) supplemented with 5% non-fat powdered milk

for 1 h to saturate unspecific binding sites, membranes were incu-

bated overnight with primary antibodies. The revelation was

assessed by appropriate horseradish peroxidase-labeled secondary

antibodies (Santa Cruz Biotechnology), followed by detection by

chemiluminescence (ThermoScientific), using ImageQuant LAS

4000 (GE Healthcare).

Antibodies

For immunofluorescence and Western blotting, the following

primary antibodies were used: rabbit anti-p62 [P0067] (1:2,000 for

Western blot; 1:100 for immunofluorescence), mouse anti-b-actin
[A1978] (1:10,000), rabbit anti-LC3B [L7543] (1:1,000), rabbit anti-

CCM2 [HPA020273] (1:1,000), and rabbit anti-AMBRA1 [PRS4555]

(1:1,000) from Sigma-Aldrich; rabbit anti-GAPDH [#2118] (1:5,000),

rabbit anti-mTOR [#2983] (1:1,000), rabbit anti-phospho-mTOR (Ser

2448) [#5536] (1:1,000), rabbit anti-p70 S6 Kinase [#9202] (1:1,000),

rabbit anti-phospho-p70 S6 Kinase (Ser 371) [#9208] (1:1,000),

rabbit anti-4E-BP1 [#9644] (1:1,000), rabbit anti-phospho-4E-BP1

(Thr 37/46) [#2855] (1:1,000), rabbit anti-ULK1 [#8054] (1:1,000),

and rabbit anti-phospho-ULK1 (Ser 757) [#6888] (1:500) from Cell

Signaling; rabbit anti-phospho-AMBRA1 (Ser 52) [#ABC80] (1:1,000)

from Millipore; rabbit anti-alpha-SMA [NB 600-531] (1:1,000)

from NovusBio; mouse anti-N-cadherin [33–3900] (1:500) from

Invitrogen; goat anti-CD31/Pecam-1 [sc-1506] (1:1,000), mouse

anti-LAMIN A/C [sc-7292] (1:1,000), and mouse anti-VE-cadherin

[sc-9989] (1:500) from Santa Cruz Biotechnology; and rabbit anti-

KRIT1 (1:500) from S.F. Retta.

Reagents

Chemicals used were the following: N-acetylcysteine (NAC; Sigma-

Aldrich), Bafilomycin A1 (BafA1; Sigma-Aldrich), Torin1 (Torin1;

Calbiochem), Rapamycin (Rapa; Calbiochem), and Cycloheximide

(CHX; Sigma-Aldrich).

Cell cultures and transfections

KRIT1 wt, KRIT1 KO, and KRIT1 KO re-expressing KRIT1 mouse

embryonic fibroblasts (MEFs) were provided by S.F. Retta (Goitre

et al, 2010) and cultured in a humidified 5% CO2, 37°C incubator in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with

10% fetal bovine serum (FBS; Life Technologies), 2 mM L-gluta-

mine, 100 U/ml penicillin (EuroClone), and 100 mg/ml strepto-

mycin (EuroClone).

KRIT1 wt, KRIT1 KO, CCM3 wt, and CCM3 KO endothelial cells

were provided by E. Dejana. Endothelial cells were cultured in a

humidified 5% CO2, 37°C incubator on 0.1% gelatin-coated 75 cm2

Falcon flasks in MCDB 131 Medium (Life Technologies) supple-

mented with 20% FBS, 2 mM L-glutamine, 1 mM sodium pyruvate,

100 U/ml penicillin and 100 mg/ml streptomycin, 100 lg/ml

heparin, and 50 lg/ml Endothelial Cell Growth Supplement (ECGS,

Sigma-Aldrich). Transient transfections were performed using JetPEI

(Polyplus transfectionTM) and Lipofectamine 2000 (Life Technolo-

gies) as transfecting reagents, according to the manufacturer’s

instructions.

Human umbilical vein endothelial cells (HUVECs) were

purchased from Life Technologies and cultured in Medium 200

supplemented with low serum growth supplement (LSGS). The cells

in the present study were used in passages 2–6. Transfections were

performed using Lipofectamine RNAiMax (Life Technologies) as

transfecting reagent, according to the manufacturer’s instructions.

ATG7 and negative siRNAs were purchased from Cell Signaling.

The human cerebral microvascular endothelial cells (hBMEC)

were purchased from ScienceCell Research Laboratory (Carlsbad).

The hBMECs were grown in EGM-2MV medium (Lonza). Cells were

grown on 6-well plates and coated with rat tail collagen type-I (BD

Biosciences). The human umbilical vein cell line, EA.hy926, estab-

lished by fusing primary human umbilical vein cells with a thiogua-

nine-resistant clone of A549 was purchased by ATCC and cultured

in Dulbecco’s modified Eagle’s medium (DMEM—Sigma-Aldrich, St

Louis, MO, USA) supplemented with 10% FBS, 2 mM L-glutamine,

and 1% penicillin/streptomycin. The cells were maintained in a

37°C incubator in a humidified atmosphere containing 5% CO2.

hBMEC cells (2.5 × 105 per well) were subjected to two round of

transfection with siRNA targeting KRIT1 or a scrambled control.

Briefly, cells were passaged into 25 nM siRNA with 1:166 HiPerFect

reagent (Qiagen) in 4:1 EGM-2MV, respectively, and plated. After an

overnight incubation in the transfection mix, cells were washed and

fed with EGM-2MV. After an additional 48 h, the transfection

process was repeated to achieve more complete knockdown. During

the second transfection, cells were seeded into assay plates as

described below. Cells were again fed with EGM-2MV completed

medium after overnight incubation with the transfection mix.

After an additional 48–72 h, cells were subjected to experimental

conditions.

EA.hy926 endothelial cells were plated in 10-cm culture dishes in

8 ml antibiotic-free standard growth medium supplemented with

FBS. Cells were grown to 60% confluence and then transfected for

5 h at 37°C with KRIT1 or control siRNAs (final concentration:

100 nmol/l). Specifically, silencing experiments were performed

using a mix of 4x pre-designed iBONi siRNA against KRIT1 target

gene. IBONi positive and negative controls were purchased from

Ribbox Life Sciences. Cell transfections were performed using

INTERFERin kit (Polyplus transfection) according to the manufac-

turer’s protocol. Cells were cultured with siRNAs for 24 h before

treatments and analysis.

For CCM2-silencing experiments, transfections were performed

using Lipofectamine RNAiMax (Life Technologies) as transfecting

reagents, according to the manufacturer’s instructions. CCM2 and

negative siRNAs (final concentration 40 nM) were purchased from

Life Technologies.

Immunohistochemical analysis

The study was performed according to the standards of the Institu-

tional Ethical Committee and the Helsinki Declaration and was

approved by the Institutional Review Board of our hospital. Specifi-

cally, approval was given by the ethic institutional review board for
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“Biobanking and use of human tissue for experimental studies” of

the Pathology Services (Azienda Ospedaliera Citta della Salute e

della Scienza di Torino and Department of Medical Sciences of the

University of Torino). All patient records were anonymized and de-

identified prior to analysis.

Histological samples of human CCM lesions were obtained from

archived, formalin-fixed, paraffin-embedded surgically resected

CCM specimens retrieved from the Department of Anatomy and

Diagnostic Histopathology at the “Città della Salute e della Scienza”

University Hospital, Turin, Italy. At the time of neurosurgery, an

informed consent was asked by neurosurgeons to patients (or legal

representatives) for scientific use of residual materials according to

Institutional Rules defined by the Ethical Committee of the “Città

della Salute e della Scienza” University Hospital, Turin. Only

archived specimens with confirmed diagnosis of CCM by both

neuroradiological and histopathological analyses were included in

the study. Most of the selected CCM specimens were linked to

patients carrying multiple CCM lesions, which are considered a

marker of hereditary CCM, suggesting that they could represent the

familial form of the disease. However, whereas some specimens

derived from carriers of a single CCM lesion, which might be

suggestive of a sporadic case, neither documented family history

information nor genetic data were available from most of the corre-

sponding medical records.

Histological serial sections (3 lm thick) of selected paraffin-

embedded CCM specimens were prepared and routinely stained

with hematoxylin and eosin (H&E). Two pathologists (A.P. and

P.C.) independently reviewed the H&E-stained slides, whereas addi-

tional sections, collected on superfrost plus slides, were used for

immunohistochemical analysis.

Immunohistochemical reactions were performed referring to the

following protocol: briefly, histological sections were deparraf-

finized, rehydrated, and subjected to a 30-min cycle at boiling

temperature in citrate buffer (pH 6.0) for antigen retrieval. Endoge-

nous peroxidase activity was blocked by a 7-min incubation with

H2O2 solution RPE 6%. Thereafter, the sections were incubated for

45 min with guinea pig monoclonal anti-p62 primary antibody

(diluted 1:300, Progen Biotechnik), followed by incubation with an

HRP-labeled polymer conjugated secondary antibody (1:800, Santa

Cruz Biotechnology) for 30 min at RT. Labeling was then visualized

by a 5- to 10-min incubation with 3,30 diaminobenzidine + H2O2

substrate chromogen which results in a brown-colored precipitate at

antigen site. The sections were subsequently counterstained with

hematoxylin. Immunohistochemical variables were scored by evalu-

ating the percentage of stained perinuclear regions at a 40× magnifi-

cation in endothelial lumens.

Immunofluorescence

Cells, transfected or treated as described, were washed with PBS and

fixed with 4% formaldehyde for 10 min at room temperature. After

washing three times with phosphate-buffered saline (PBS), cells

were permeabilized with 0.1% Triton X-100 in PBS (PBST) at room

temperature for 10 min and blocked with PBST containing 5% BSA

at room temperature for 1 h. Cells were incubated with primary

antibody in PBST containing 5% BSA overnight at 4°C, washed

three times with PBS, and then incubated with appropriate

isotype-matched, AlexaFluor-conjugated secondary antibodies (Life

Technologies) at room temperature for 1 h. Digital images were

acquired with confocal microscope (Zeiss LSM510) using a 63 × 1.4

NA Plan-Apochromat oil-immersion objective. Acquired images

were then analyzed by using open source software Fiji.

Immunostaining for fluorescence microscopy of brain sections
and retinas

All animal procedures were performed in accordance with the Insti-

tutional Animal Care and Use Committee (IACUC), in compliance

with the guidelines established in the Principles of Laboratory

Animal Care (directive 86/609/EEC) and approved by the Italian

Ministry of Health.

Brains and eyes from mice pups were fixed in 3% paraformalde-

hyde immediately after dissection, and fixation was continued over-

night at 4°C. The retinas were dissected from the eyes just before

staining as the whole mount. Fixed brains were embedded in 4%

low-melting-point agarose and sectioned along the sagittal axis

(150 lm) using a vibratome (1000 Plus, The Vibratome Company,

St. Louis, MO, USA).

Brain sections and retinas (as whole mount) were stained as

floating samples in 12-well and 96-well plates, respectively. They

were blocked overnight at 4°C in 1% fish-skin gelatin with 0.5%

Triton X-100 and 5% donkey serum in phosphate-buffered saline

(PBS) containing 0.01% thimerosal. The samples were incubated

overnight at 4°C with the primary antibodies diluted in 1% fish-skin

gelatin with 0.25% Triton X-100 in PBS containing 0.01% thimer-

osal. Following washing with 0.1% Triton X-100 in PBS, the

secondary antibodies were added for 4 h at room temperature in

1% fish-skin gelatin with 0.25% Triton X-100 in PBS containing

0.01% thimerosal. The incubation with DAPI was in PBS for 4 h,

which was followed by several washes in PBS, post-fixation with

3% paraformaldehyde for 5 min at room temperature, and further

washes in PBS. The brain sections were mounted in Vectashield

with DAPI, and the coverslips fixed with nail varnish; the retinas

were mounted in Prolong gold with DAPI.

CCM3-ECKO mice

CCM3-flox/flox mice were bred with Cdh5(PAC)-CreERT2 mice for

Tamoxifen-inducible endothelial cell-specific expression of Cre

recombinase and CCM3 gene recombination.

CCM3-flox/flox mice: these mice were generated at Taconic-

Artemis (Koeln, Germany) on a C57BL/6N background according to

the knock-in procedures. In this case, two P-lox sequences were

inserted that flank exons 4 and 5 of the murine CCM3 gene. P-lox

sites can be targeted by the Cre recombinase enzyme, which induces

recombination and subsequent excision of the nucleotides inserted

between P-lox sequences. These mice have been used to control in a

time-dependent manner for the deletion of CCM3 gene.

Cdh5(PAC)-CreERT2 mice175: these mice have been kindly

donated by Dr. R.H. Adams, (University of Munster, Munster,

Germany) and present the CreERT2 gene under the VE-cadherin

(Cdh5) promoter. Since VE-cadherin is an endothelial-specific gene,

the expression of CreERT2 is confined to the endothelial district.

CreERT2 gene expresses a fusion protein in which Cre recombinase

has been fused together with the regulatory domain of the estrogen

receptor. This domain is able to retain Cre recombinase into the
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cytoplasm of ECs in resting conditions. Only after stimulation with

estrogen or an analog such as Tamoxifen CreERT2, fusion protein

can dimerize and translocate to the nucleus where it can act on

P-lox sites to drive homologous recombination. This model allows

the operator to induce Cre recombinase expression in an endothelial-

specific fashion just by Tamoxifen administration.

mRFP-GFP-LC3 detection

For autophagic flux measurements, cells cultured on 24-mm glass

coverslips were transfected with the mRFP-GFP-LC3 tandem

construct. After 24 h of expression, cells were placed in an open

Leyden chamber on a 37°C thermostated stage. The quantitative

analysis of the autophagic flux was performed on a Nikon LiveScan

Swept Field Confocal Microscope (SFC) Eclipse Ti with a 60× magni-

fication and equipped with NIS-Elements microscope imaging soft-

ware (Nikon Instruments). For each condition, the colocalization of

the red and green signals was determined by manual counting of

fluorescent puncta in at least 20 independent visual fields.

ROS measurements using mt-HyPer probe

For mitochondrial H2O2 levels measurements, KRIT1 KO and KRIT1

KO re-expressing KRIT1 cells were cultured on 24 mm glass cover-

slips and transfected with the H2O2 sensor pHyPer-dMito (mt-

HyPer). After 24 h of expression, cells were maintained in Krebs–

Ringer buffer (KRB: 135 mM NaCl, 5 mM KCl, 1 mM MgSO4,

0.4 mM KH2PO4, 5.5 mM glucose, 20 mM HEPES, pH 7.4), supple-

mented with 1 mM CaCl2, and placed in an open Leyden chamber

on a 37°C thermostated stage. 494/406 nm excitation filters and a

500-nm long-pass beam splitter were used, and an image pair was

obtained in every 200 ms. The fluorescence data collected were

expressed as emission ratios. The experiments were performed on

Cell^R multiple wavelength high-resolution fluorescence microscopy

system.

Soluble/Insoluble fraction

Total cellular proteins were separated into detergent-soluble and

detergent-insoluble fractions. For detergent-soluble fraction, cells

were lysed with a 1% Triton X-100 buffer (50 mM Tris pH 8.0,

150 mM NaCl, 1 mM EDTA, 10% glycerol, 1% Triton X-100,

protease, and phosphates inhibitor cocktail). After 30 min on ice,

lysates were centrifuged for 15 min at 12,000 g at 4°C and super-

natant was collected as detergent-soluble fraction. The pellet was

solubilized in the same buffer with addition of 1% SDS for 10 min

at RT and, after centrifugation at 12,000 g for 15 min, the super-

natant was collected as detergent-insoluble fraction. The detergent-

soluble (10 lg) and detergent-insoluble (5 lg) fractions were

subjected to immunoblot analysis. GAPDH and Lamin A/C were

used as controls of the detergent-soluble and detergent-insoluble

fractions, respectively.

Real-time PCR

Total RNA was extracted with TRIzol� Reagent (Invitrogen, Carls-

bad, CA, USA). RNAs were purified with RNeasy Mini Kit (Qiagen

GmbH, Hilden, Germany), and DNase digestion was performed with

RNase-Free DNase Set (Qiagen). The RNA quality and concentration

were measured using the NanoDropTM ND-1000 (Thermo Scientific).

For the first-strand cDNA synthesis, 1,000 ng of total RNA of

each sample was reverse-transcribed with M-MLV Reverse Tran-

scriptase (Invitrogen), following the manufacturer’s protocol.

Human primers were selected for each target gene with Primer 3

software. Real-time PCRs were carried out using the designed

primers at a concentration of 300 nM and FastStart SYBR Green

Master (Roche Diagnostics, Mannheim, Germany) on a Rotor-Gene

3000 (Corbett Research, Sydney, Australia). Thermal cycling condi-

tions were as follows: 10-min denaturation at 95°C, followed by 40

cycles of denaturation for 10 s at 95°C; annealing for 20 s at 60°C;

and elongation for 30 s at 72°C. Values were normalized to the

expression of the glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) and glucuronidase beta (GUSB) internal references, whose

abundance did not change under our experimental conditions.

Cell proliferation assay

Cell proliferation assays were performed using a colorimetric

method based on crystal violet staining. Cells, seeded at a density of

n cells per well in 12-well plates, are left untreated or treated with

Rapamycin (500 nM) or Torin1 (100 nM) in complete medium at

37°C for different time periods. Starting from the following day (day

1), 1 set of wells (at days 2, 3, 4) was washed with PBS, fixed for

10 min at room temperature in 4% formaldehyde, and then left in

PBS at 4°C. The last day, all the wells were washed with PBS and

then stained with crystal violet for 20 min. Excess dye was removed

by three washes with PBS, and plates were allowed to air dry. After

solubilization with 10% acetic acid solution, the absorbance was

read at 595 nm with a microplate reader (SPECTROstar Nano-BMG

Labtech).

Aggresome detection

The ProteoStat Aggresome Detection Kit (Enzo Life Sciences) was

used according to the manufacturer’s instructions. The kit provides

a 488-nm excitable red fluorescent molecular rotor dye for the speci-

fic detection of aggregated proteins and aggresome-like inclusion

bodies in fixed and permeabilized samples.

Tube formation assay

HUVECs (2 × 105 cells) transfected with scrambled siRNA or ATG7

siRNA were seeded onto 6-cm culture dishes coated with BD Matri-

gelTM Matrix (Becton-Dickinson) and incubated for 6 h at 37°C. After

that, the formation of capillary-like structures was stained with

calcein (Life Technologies) for 20 min at 37°C and then observed

using an Axiovert 200M Carl Zeiss fluorescence microscope (20×

objective); phase-contrast images were scanned with Leica DM IL

LED, using a 4× objective.

Endothelial cell migration assay

Endothelial cell migration was detected by Transwell chamber assay

(Corning). Briefly, the medium containing a 5% FBS was added to

the lower chambers, and then, cells (HUVEC or lung endothelial

cells) were suspended in 100 ll of serum-free medium and seeded
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onto the upper chambers. After incubation at 37°C for 8 h, the

migrated cells were fixed with 4% paraformaldehyde, stained with

the nuclear marker DAPI, and then photographed and automatically

counted using a custom-made Cell Profiler pipeline. The images

have been taken with a Carl Zeiss Axiovert 200 M using a 20×

magnification.

Statistical analysis

Statistical analyses were performed using an unpaired two-tailed

t-test (two groups) or one-way ANOVA with Bonferroni correction

(for groups of three or more). For grouped analyses, multiple

unpaired t-test with correction for multiple comparisons using the

Holm–Sidak method was performed. Normal distribution of data

was assessed by applying a D’Agostino & Pearson omnibus normal-

ity test. F-test was used to compare variances between groups. A

P-value < 0.05 was considered significant. All data are reported as

mean � s.e.m. Exact P-values are indicated in the figure legends.

Expanded View for this article is available online:

http://emmm.embopress.org
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For more information
• www.unife.it/labs/signaltransduction: Paolo Pinton’s Lab website

• http://www.ccmitalia.unito.it/: CCM Italia, the Italian multidisciplinary

research network on Cerebral Cavernous Malformation (CCM) disease.

• http://www.ccmitalia.unito.it/aiac/: Associazione Italiana Angiomi Cavernosi

(AIAC), the Italian patient association on Cerebral Cavernous Malformation

(CCM) disease committed to providing science-based and community-driven

information and support for Italian people affected by cavernous angiomas.

• http://www.angiomaalliance.org/: Angioma Alliance, an organization by and

for those affected by cavernous angiomas and their loved ones, health

professionals, and researchers.

• http://www.cavernoma.org.uk: Cavernoma Alliance UK, a charity created to

improve the quality of life for those affected by cavernous angiomas

through education, support, and promotion of research.

• https://www.telethon.it/ricerca-progetti/malattie-trattate/malformazione-

cavernosa-cerebrale.

The paper explained

Problem
Cerebral Cavernous Malformations (CCM, also known as cavernous
angioma or cavernoma) are major vascular malformations having a
raspberry-like appearance and consisting of closely clustered, abnor-
mally dilated and leaky capillary channels (caverns). Within the brain,
CCMs occur as single or multiple lesions and, depending on the size
and location, can be clinically silent or give rise to serious clinical
symptoms such as headaches, neurological deficits, seizures, stroke,
and intracerebral hemorrhage that can result in death. CCM is a
disease of proven genetic origin that may arise sporadically or can be
inherited as an autosomal dominant condition with incomplete pene-
trance and variable expressivity. Genetic studies have so far identified
three genes whose mutation causes CCM: KRIT1 (CCM1), CCM2 and
CCM3. To date, there are not direct therapeutic approaches for the
CCM disease, besides the surgical removal of accessible lesions in
patients with recurrent hemorrhage or intractable seizures. In particu-
lar, novel pharmacological strategies are required for preventing the
de novo formation of CCM lesions in susceptible individuals and the
progression of the disease. A deep understanding of the molecular
mechanisms underlying CCM disease pathogenesis should provide a
fundamental framework for the development of novel, more safe ther-
apeutic strategies, specially required for inoperable or multiple lesions.

Results
Malfunction of autophagy, one of the major degradative processes
inside the cell, is often related to a plethora of human diseases. We
found that down-regulation of CCM genes suppressed autophagy both
in cellular and animal models of CCM disease. Moreover, we show
that human CCM lesions display increased levels of p62/SQSTM1, an
autophagic marker that accumulates when autophagy is inhibited.
Furthermore, suppression of autophagy is linked to the upregulation
of the mTOR regulatory pathway. In addition, we demonstrated that
defective autophagy is related to endothelial-to-mesenchymal transi-
tion and ROS production, two key phenotypic signatures of CCM
disease. Notably, pharmacological inhibition of mTOR significantly
increased autophagy and rescued some of the molecular and cellular
phenotypes associated with CCM.

Impact
Through the identification of defective autophagy as a potential key
aspect in the pathogenesis of CCM disease, we offer initial clues and
novel options for the development of therapeutic strategies based on
autophagy modulation. In particular, our findings suggest that target-
ing the mTOR pathway may be a reasonable strategy to alleviate clin-
ical symptoms caused by CCM lesions. Indeed, mTOR inhibitors (such
as Rapamycin) are currently used in several clinical trials, including
treatment of vascular anomalies, and are usually well tolerated. Thus,
they might represent novel therapeutic agents in the treatment of
CCM disease.
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• http://www.omim.org/entry/116860: Cerebral Cavernous Malformation (CCM)

disease, a Mendelian vascular disorder (OMIM 116860) with an estimated

prevalence of 0.3–0.5% in the general population.
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