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Abstract In Alzheimer’s disease, the accumulation of
amyloid-beta (Aβ) in the brain occurs in the parenchyma and
cerebrovasculature. Several evidences support that the neuronal
demise is potentiated by vascular alterations in the early stages
of the disease, but the mechanisms responsible for the dysfunc-
tion of brain endothelial cells that underlie these cerebrovascu-
lar changes are unknown. Using rat brain microvascular endo-
thelial cells, we found that short-term treatment with a toxic
dose of Aβ1-40 inhibits the Ca

2+ refill and retention ability of
the endoplasmic reticulum and enhances the mitochondrial and
cytosolic response to adenosine triphosphate (ATP)-stimulated
endoplasmic reticulum Ca2+ release. Upon prolonged Aβ1-40

exposure, Ca2+ homeostasis was restored concomitantly with a
decrease in the levels of proteins involved in its regulation
operating at the plasma membrane, endoplasmic reticulum,
and mitochondria. Along with perturbations in Ca2+ regulation,
an early increase in the levels of oxidants and a decrease in the

ratio between reduced and oxidized glutathione were observed
in Aβ1-40-treated endothelial cells. Under these conditions, the
nuclear levels of oxidative stress-related transcription factors,
namely, hypoxia-inducible factor 1α and nuclear factor
(erythroid-derived 2)-related factor 2, were enhanced as well
as the protein levels of target genes. In conclusion, Aβ1-40

affects several mechanisms involved in Ca2+ homeostasis and
impairs the redox homeostasis simultaneously with stimulation
of protective stress responses in brain endothelial cells. How-
ever, the imbalance between cell death and survival pathways
leads to endothelial dysfunction that in turn contributes to
cerebrovascular impairment in Alzheimer’s disease.
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Introduction

Several evidences show that accumulation of amyloid-beta
(Aβ) occurs in the brain parenchyma and in the
cerebrovasculature in Alzheimer’s disease (AD) and suggest
that neurovascular dysfunction plays a major role in the neu-
rodegenerative process and cognitive decline [1–5]. Vascular
pathology develops early and before the first symptoms in AD
and correlates with changes in the blood-brain barrier [3].
Although the clearance of Aβ across the blood-brain barrier
is considered to be deficient in the AD brain [6], other mech-
anisms such as cerebral Aβ degradation mediated by prote-
ases such as neprilysin and insulin-degrading enzyme seem to
play a major role and is supported by studies such as those by
Iwatsubo and colleagues performed in AD patients and trans-
genic mice [7–10]. Deposition of Aβ in cerebral vasculature
of AD transgenic mice and AD patients correlates with age-
dependent dysfunction of brain capillary endothelium
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[11–13]. Although parenchymal diffuse and neuritic plaques
have preferentially the Aβ1-42 isoform, vascular deposits con-
tain levels of Aβ1-40 much higher than those of Aβ1-42 [12]. In
addition, the toxicity of Aβ on endothelial cells was well
demonstrated in animals, isolated vessels, and cultured cells
[14–17]. Aβ-induced vasoconstriction, which was demon-
strated in ex situ human cerebral arteries and brain
microvessels [18], seems to contribute to the reduced cerebral
blood flow and consequent delay in oxygen and glucose
transport to the brain during mild cognitive impairment and
in AD [19]. The rat brain endothelial cells were shown to be
more sensitive to oxygen and glucose deprivation than hippo-
campal neurons, and the subsequent activation of hypoxia-
inducible factor 1α (HIF-1α) was found to increase Aβ
production contributing to the described AD-related blood-
brain barrier dysfunction [20].

The deregulation of Ca2+ homeostasis has been re-
ported in different cell types from AD brain patients
and also in animal and in vitro models of the disease
[21–24]. Endoplasmic reticulum (ER) Ca2+ homeostasis
is disturbed by some of the most frequent familial AD-
associated mutations in presenilins, which function as
passive Ca2+ leak channels in the ER membrane
[25–27]. Recent studies demonstrate that familial muta-
tions perturb the function of the mitochondrial-
associated membranes and also suggest an important
role for ER-mitochondria contacts and crosstalk in spo-
radic AD pathology [28, 29]. Moreover, lymphocytes
from mild cognitive impairment and sporadic AD pa-
tients are more prone to inositol 1,4,5-trisphosphate
(IP3) receptor (IP3R) activation, have an enhanced mag-
nitude of Ca2+ influx during store-operated Ca2+ entry
(SOCE) that is activated upon ER Ca2+ depletion, and,
consequently, have increased cytosolic Ca2+ levels [30,
31]. In cultured cortical neurons, Aβ1-40 was shown to
significantly deplete ER Ca2+ leading to mitochondrial
membrane depolarization, release of cytochrome c and
activation of apoptosis-related caspases [32], and also to
increase IP3R and voltage-dependent anion channel
(VDAC) protein expression as well as the number of
ER-mitochondria contact points and mitochondrial Ca2+

concentrations [28]. Recently, we demonstrated that
Aβ1-40 induces ER stress in brain endothelial cells and
triggers a mitochondria-mediated apoptotic cell death
pathway involving ER-to-mitochondria Ca2+ transfer,
decrease of mitochondrial membrane potential, and re-
lease of pro-apoptotic factors [33].

Deregulated Ca2+ homeostasis is associated with the
production of reactive oxygen species (ROS) in numer-
ous cell types under pathological conditions. For in-
stance, mitochondrial depolarization due to mitochondri-
al Ca2+ overload disrupts the electron transport chain,
increasing ROS generation [34]. Besides, mitochondrial

Ca2+ can activate NADPH oxidase leading to the for-
mation of free radicals and lipid peroxidation that de-
plete the antioxidant glutathione (GSH) [35]. Recent
findings in yeast demonstrated that ROS production
under mitochondrial dysfunction conditions is mediated
by the ER resident NADPH oxidase [36]. Since capil-
lary endothelial cells have a relatively high number of
mitochondria, these cells are very susceptible to oxida-
tive stress [37]. In addition to mitochondria, endothelial
cells have other sources of ROS such as the endothelial
nitric oxide synthase that produces nitric oxide in the
presence of high Ca2+ levels [38]. On the other hand, ROS
also deregulate Ca2+ homeostasis. For instance, ROS increase
the response of IP3Rs to cytosolic IP3, activate or inhibit
ryanodine receptors (RyRs) depending on ROS concentration,
inhibit SOCE-associated Orai1, and alter the activity of
voltage-gated Ca2+ channels and sarco/endoplasmic reticulum
Ca2+-ATPase (SERCA) [39].

Although low levels of ROS regulate cell survival signal-
ing pathways, high levels of ROS cause cell damage and are
involved in many neurodegenerative diseases, including AD
[40–43]. Increased amounts of intracellular ROS have been
found in different cell types exposed to Aβ and in AD animal
models [42, 44], and, in turn, ROS promote the production of
Aβ [45]. Increased ROS levels and endothelial cell-to-cell
transmission are associated with apoptosis and disruption of
the blood-brain barrier [46, 47]. Endothelial cells have several
mechanisms to counteract the rise of ROS, including the
translocation to the nucleus of transcription factors that regu-
late antioxidant genes, such as the nuclear factor (erythroid-
derived 2)-related factor 2 (Nrf2, the master regulator of
antioxidant genes) and hypoxia-inducible factor 1-alpha
(HIF-1α, the master regulator of cellular adaptation to
hypoxia), and the subcellular distribution of antioxidants such
as GSH and superoxide dismutase [48]. However, ROS pro-
duction can overwhelm the normal antioxidant capacity of the
cells that can also be diminished by exogenous factors or by
the accumulation of damaging agents as occurs during the
aging process [48].

In order to better understand the mechanisms implicated in
brain endothelial cells’ dysfunction in AD, the perturbation of
Ca2+ and redox homeostasis was investigated in cells from rat
brain microvessels treated with levels of Aβ1-40 previously
demonstrated to be toxic. Data revealed time-dependent alter-
ations in Ca2+ concentration in the cytosol, ER, and mitochon-
dria upon Aβ1-40 exposure that were correlated with oxidative
stress markers and changes in proteins that are involved in the
regulation of Ca2+ homeostasis at the ER-plasma membrane
and ER-mitochondria level and activation of oxidative stress
responses. These results provide new insights into the delete-
rious effects of Aβ1-40 in brain endothelial cells that can be
useful to the development of new therapies to prevent or delay
the onset of AD.
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Experimental Procedures

Materials

Mem-Alpha medium with Glutamax-1, Nut Mix F-10
W/GLUTAMAX-1, fetal bovine serum (FBS), geneticin, and
enhanced chemiluminescent (ECL) were acquired from
Invitrogen Life Science (Paisley, UK). The synthetic Aβ1-40

peptide was from Bachem (Bubendorf, Switzerland).
Polyvinylidene difluoride (PVDF) membrane, goat alkaline
phosphatase-linked anti-rabbit and anti-mouse secondary anti-
bodies, and the Enhanced chemifluorescence (ECF) reagent
were acquired from Amersham Pharmacia Biotech (Bucking-
hamshire, UK). Mouse monoclonal antibody against
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was
from Chemicon International Inc. (Temecula, CA, USA).
Bio-Rad protein dye assay reagent and acrylamide were pur-
chased from Bio-Rad (Hercules, CA, USA). Collagen was
obtained from Advanced BioMatrix, Inc. (San Diego, CA,
USA). Trypsin-ethylenediaminetetraacetic acid (EDTA) solu-
tion, protease inhibitors (leupeptin, pepstatin A, chymostatin,
and aprotinin), recombinant human basic fibroblast growth
factor (bFGF), coelenterazine WT and N, glucose, ionomycin,
bovine serum albumin (BSA), Tris-HCl, Triton X-100, Na-
deoxycholate, sodium dodecyl sulfate (SDS), NaCl, KCl,
MgCl2, CaCl2, orthovanadate, NaF, hydroxyethyl
piperazineethanesulfonic acid (HEPES)-Na, MgCl2, EDTA,
EGTA, phenylmethylsulfonyl fluoride (PMSF), dithiothreitol
(DTT), NaOH, H3PO4, NaH2PO4, Na3PO4, MgSO4, adenosine
triphosphate (ATP), oxidized glutathione (GSSG) and GSH, O-
phthaldehyde (OPT), N-ethylmaleimide (NEM), and the rabbit
polyclonal anti-actin and mouse monoclonal anti-β-tubulin
antibodies were obtained from Sigma Chemical Co. (St. Louis,
MO, USA). The ProteoExtract® Subcellular Proteome Extrac-
tion Kit was purchased from Calbiochem (Darmstadt, Germa-
ny). 2′,7′-Dichlorodihydrofluorescein diacetate (DCFH2-DA)
was obtained from Molecular Probes (Leiden, The Nether-
lands). The mouse monoclonal anti-SERCA2, anti-HIF-1α,
and anti-TATA-box binding protein (TBP) and the rabbit poly-
clonal anti-VDAC, anti-Nrf2, and anti-glutathione reductase
(GRd) antibodies were acquired from Abcam plc (Cambridge,
UK). The rabbit polyclonal anti-IP3R was from BD Biosci-
ences (Franklin Lakes, NJ, USA). The rabbit polyclonal anti-
vascular endothelial growth factor (VEGF) and anti-glucose
transporter (GLUT)1 antibodies were from Merck KGaA
(Darmstadt, Germany). The goat horseradish peroxidase con-
jugated anti-rabbit and anti-mouse secondary antibodies, the
donkey alkaline phosphatase conjugated anti-goat secondary
antibody, the rabbit polyclonal anti-stromal interaction mole-
cule (STIM)1 and anti-Orai1 antibodies, and the goat polyclon-
al anti-peroxisome proliferator-activated receptor gamma, co-
activator 1 alpha (PGC1α) antibody were purchased from
Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA).

Culture and Treatments of Rat Brain Endothelial Cells

The rat brain RBE4 cell line, provided by Dr. Jon Holy
(University of Minnesota, Duluth, USA), was cultured as
described previously [33]. RBE4 cells plated on collagen-
coated multiwell plates were treated during 3–24 h with
synthetic Aβ1-40 at a concentration of 2.5 μM, which was
found to be enriched in high molecular weight oligomers with
more than 50 kDa that are toxic [33] and induce a time-
dependent intracellular accumulation of Aβ in this cell line
[49]. Thereafter, levels of hydroperoxides, GSH and GSSG,
and also of several signaling proteins were measured. Alter-
natively, cells plated in plastic coverslips coated with collagen
at a similar density were transfected with aequorin comple-
mentary DNA (cDNA) and treated with Aβ1-40 during 1–24 h
for Ca2+ measurements.

Rat Brain Endothelial Cell Transfection

RBE4 cells were transfected with chimeric aequorins targeted
to the ER (erAEQmut), cytosol (cytAEQ), and mitochondria
(mtAEQmut) using the calcium phosphate method. “AEQ”
refers to wild-type aequorin, and “AEQmut” refers to a low-
affinity D119A mutant of aequorin. Briefly, 1 h before the
transfection, the cell culture medium was replaced by fresh
medium and then the transfection solution (40 μg DNA/ml
and 125 mMCaCl2 plus, in millimolar, 140 NaCl, 25 HEPES,
and 0.75 Na2HPO4, pH 7.12) was added. After 16 h, cells
were washed with phosphate buffered saline (PBS), culture
medium was refreshed, and aequorin measurements were
performed 32 h later.

Aequorin Measurements

The analysis of erAEQmut was performed as previously de-
scribed [50].

Concerning the experiments with cytAEQ and
mtAEQmut, RBE4 cells were incubated for 90 min with
25 μM coelenterazine WT, which was added directly to
culture medium, and aequorin measurements were per-
formed in Ca2+-supplemented medium in the presence
of 100 μM ATP to induce the release of Ca2+ from ER
[50].

The output of the discriminator was captured by a Thorn
EMI photon-counting board and stored in an IBM-compatible
computer for further analyses. The aequorin luminescence
data were calibrated offline into [Ca2+] values, which were
expressed in micromolar, using a computer algorithm based
on the Ca2+ response curve of wild-type and mutant aequorins
[50].

The maximal retention of Ca2+ in the ER and the rate of
Ca2+ uptake into this organelle were calculated upon addition
of 1 mM CaCl2 in erAEQmut-expressing cells and were
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expressed in micromolar and micromolar per second,
respectively. Moreover, the maximum retention of Ca2+

in the mitochondria or cytosol was calculated upon
addition of ATP in mtAEQmut- or cytAEQ-expressing
cells.

Protein Analysis by Western Blot

The levels of proteins involved in Ca2+ homeostasis and
oxidative stress were analyzed by immunoblotting using cel-
lular extracts obtained from treated or untreated RBE4 cells
[33, 51]. Additionally, the nuclear Nrf2 and HIF-1α protein
levels were evaluated by immunoblotting using nuclear frac-
tions obtained with the ProteoExtract® Subcellular Proteome
Extraction Kit according to the manufacturer’s instruction.
The protein content was measured using the Bio-Rad protein
dye assay reagent.

Total extracts containing 10 μg protein (for SERCA2,
IP3R, VDAC, STIM1, and Orai1) or 30 μg protein (for
GRd, PGC1α, VEGF, and GLUT1), or nuclear fractions
containing 30 μg protein (for Nrf2 and HIF-1α), were
separated by electrophoresis and transferred to PVDF
membranes [33]. The membranes were incubated over-
night at 4ºC with primary antibodies, diluted in TBS-T:
SECA2 (1:500), total IP3R (1:500), total VDAC (1:3,000),
STIM1 (1:1,000), Orai1 (1:1,000), Nrf2 (1:1,000), GRd
(1:2,000), PGC1α (1:500), HIF-1α (1:500), VEGF
(1:500), or GLUT1 (1:500). Control of protein loading
was performed using primary antibodies against β-tubulin
(1:3,000), actin (1:5,000), or GAPDH (1:10,000) for total
cellular extracts and a primary antibody against TBP
(1:2,000) for nuclear extracts. After washing, membranes
were incubated for 1 h at RT with an alkaline phosphatase
or horseradish peroxidase-conjugated secondary anti-mouse
or anti-rabbit or anti-goat antibody (1:20,000). Bands of
immunoreactive proteins were visualized after membrane
incubation with ECF or ECL reagents during approximate-
ly 5 min, and densities of protein bands were calculated
using the WCIF ImageJ program (Wayne Rasband, Re-
search Services Branch, National Institute of Mental
Health, Bethesda, MD, USA). The ratios between
SERCA2, total IP3R, or total VDAC and β-tubulin; the
ratios between STIM1 or Orai1 and actin; the ratio be-
tween nuclear HIF-1α or nuclear Nrf2 and TBP; and the
ratios between GRd, PGC1α, VEGF, or GLUT1 and
GAPDH were calculated, and results were expressed rela-
tively to control values.

Quantification of Intracellular Reactive Oxygen Species

The oxidant-sensitive dye DCFH2-DA was used to evaluate
changes in intracellular hydroperoxide levels [52, 53], as
previously described [44].

Measurement of Reduced and Oxidized Glutathione
Intracellular Levels

The ratio between reduced and oxidized glutathione (GSH/
GSSG) is a good indicator of oxidative stress in cells. After
treatments, endothelial cells were washed two times with
PBS; lysed at 4ºC in 15 mM Tris pH 7.4 supplemented with
0.1 mM PMSF, 2 mM DTT, and 1:1,000 of a protease inhib-
itor cocktail (1 μg/ml leupeptin, pepstatin A, chymostatin, and
antipain); and the levels of GSH and GSSG were evaluated in
a mic rop l a t e r e ade r (Spec t r aMax Gemin i EM
fluorocytometer) [54]. The results were determined in
microgram GSH or GSSG per microgram protein, and the
ratio between GSSG and GSH was calculated and expressed
relatively to the control.

Data Analysis

Data were expressed as means±SEM of measurements per-
formed in duplicate, from at least three independent experi-
ments. Statistical significance analysis was determined using
one-way ANOVA followed by Dunnett’s post hoc tests or
using Student’s t test in the GraphPad Prism Software (San
Diego, CA, USA). The differences were considered signifi-
cant for P values <0.05.

Results

Ca2+ Homeostasis in Brain Endothelial Cells Is Deregulated
by Aβ1-40

Changes in intracellular Ca2+ homeostasis were investigated
in RBE4 cells after treatment for 1–24 h with 2.5 μMAβ1-40,
a concentration that was previously demonstrated to induce a
significant decrease in RBE4 cell survival [33]. For that
purpose, aequorin probes targeted to different subcellular
compartments, namely, mitochondrial matrix, ER lumen, or
cytosol, were used [50]. The response of the ER to reestablish
Ca2+ levels after the removal of intracellular Ca2+ with EGTA
and ionomycin was significantly reduced by Aβ1-40 with a
maximal decrease observed 3 and 6 h after treatment (Fig. 1a–
c). Moreover, the rate of ER Ca2+ refill also decreased with
minimum values reached at 6 h (Fig. 1b and d). In addition, a
time-dependent increase in basal [Ca2+]mit was determined
during Aβ1-40 exposure, which reached statistical significance
at 6 and 12 h compared to untreated cells (Fig. 2b and c). ATP-
induced Ca2+ release from ER increased significantly the
concentration of Ca2+ in mitochondria ([Ca2+]mit) (Fig. 2a
and d) and in the cytosol ([Ca2+]cyt) (Fig. 3a and c) in cells
treated during 1 or 3 h with Aβ1-40, which recovered after that
(Figs. 2 and 3).
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Fig. 1 Aβ1-40 deregulates endoplasmic reticulum (ER) Ca2+ homeostasis
in brain endothelial cells. RBE4 cells transfected with aequorin chimera
targeted to ER lumen were treated with Aβ1-40 (2.5 μM) for 1, 3, 6, 12, or
24 h. For the analysis of the ability of the ER to store Ca2+ (a and b), these
ions were first removed from the cytosol and intracellular stores with a
Ca2+ chelator and were then replaced through the addition of 1 mM
CaCl2. The ER Ca2+ response (c) corresponds to the maximum peak in

[Ca2+]ER after Ca2+ replacement, and the rate of ER Ca2+ uptake (d)
corresponds to the slope of the regression line calculated after Ca2+

addition. All traces correspond to single representative experiments (a
and b), and graphic bars represent the means±SEM of at least 12
independent experiments. *p<0.05, **p<0.01, and ***p<0.001 signifi-
cantly different from control

Fig. 2 Aβ1-40 deregulates
mitochondrial Ca2+ homeostasis
in brain endothelial cells. RBE4
cells transfected with aequorin
chimera targeted to mitochondrial
matrix were treated with Aβ1-40

(2.5 μM) for 1, 3, 6, 12, or 24 h.
Cells were stimulated with ATP
(100 μM) and basal [Ca2+]mit (a,
b, and c), corresponding to
[Ca2+]mit before the addition of
ATP, and mitochondrial Ca2+

responses (a, b, and d),
corresponding to the maximum
peak after the addition of ATP,
were analyzed. All traces
correspond to single
representative experiments (a and
b), and graphic bars represent the
means±SEM of at least eight
independent experiments.
*p<0.05 significantly different
from control
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Aβ1-40 Affects the Levels of Proteins That Regulate Ca
2+

Homeostasis in Brain Endothelial Cells

Since Ca2+ homeostasis was altered in RBE4 cells treated with
Aβ1-40, the protein levels of regulators of Ca2+ homeostasis
were analyzed by Western blotting (WB). The levels of
SERCA2, a Ca2+-ATPase responsible for Ca2+ transfer from
the cytosol to the ER lumen, significantly increased after 3 h
of Aβ1-40 treatment and decreased after that until a significant
decrease was measured at 24 h (Fig. 4a and b). WB analysis
revealed a time-dependent reduction on the levels of an ER
membrane-resident receptor involved in Ca2+ release, the
IP3R, which becomes significant upon 24 h of Aβ1-40 incu-
bation (Fig. 4a and c). The protein levels of VDAC, which is
located in the outer mitochondrial membrane and is an impor-
tant regulator of Ca2+ fluxes between the ER and the mito-
chondria, also decreased in a time-dependent manner, and the
decrease was shown to be statistically significant at 12 and
24 h of incubation with Aβ1-40 (Fig. 4a and d). Similarly, the
protein levels of STIM1 and Orai1, that regulate the entry of
Ca2+ at the plasma membrane level after the depletion of ER
Ca2+, significantly decreased in cells treated with Aβ1-40 for
more than 12 h (Fig. 4a, e, and f).

Brain Endothelial Cells Undergo Changes in Redox
Homeostasis When Exposed to Aβ1-40

In order to investigate the redox status under conditions of
perturbed Ca2+ homeostasis triggered by Aβ1-40 in brain
endothelial cells, a time-dependent analysis of the levels of
intracellular hydroperoxides and of the GSH/GSSG ratio was
performed in control versus Aβ1-40-treated RBE4 cells. At 3 h
of treatment, the levels of intracellular hydroperoxides mea-
sured with DCFH2-DA reached a maximum then decreased,
and no significant differences between controls and treated
cells were detected at 24 h (Fig. 5a). The GSH levels de-
creased until 6 h of Aβ1-40 incubation and returned to control
levels at 24 h (Fig. 5b), and the GSSG levels significantly

increased during the 3–24-h period of Aβ1-40 treatment
(Fig. 5c). Under these conditions, the ratio between GSH
and GSSG significantly decreased in Aβ1-40-treated cells with
a maximum reduction at 6 h (Fig. 5d).

Aβ1-40 Activates Oxidative Stress Responses in Brain
Endothelial Cells

The protein levels of mediators of the cellular response to
oxidative stress, namely, the transcription factors Nrf2 and
HIF-1α, were analyzed in RBE4 cells treated during 3, 6,
12, or 24 h with Aβ1-40 by immunoblotting. Nrf2 is known to
increase the expression of PGC1α and several antioxidant
enzymes involved in GSH metabolism including GRd, and
HIF-1α upregulates genes such as VEGF and the glucose
transporter GLUT1. Nrf2 nuclear levels increased until 12 h
of Aβ1-40 exposure and then returned to control values
(Fig. 6a and b). In addition, the levels of GRd increased
significantly at 12 and 24 h of Aβ1-40 treatment, and PGC1α
was upregulated after 6 h of Aβ1-40 exposure (Fig. 6a, c, and
d). A significant time-dependent increase in HIF-1α levels
was detected in the nucleus upon incubation with Aβ1-40

(Fig. 6a and e). Concomitantly or following this increase of
nuclear HIF-1α, the levels of VEGF and GLUT1 increased in
Aβ1-40-treated cells (Fig. 6a, f, and g).

Discussion

Endothelial dysfunction induced by Aβ accumulated around
brain microvascular endothelial cells has been implicated in
the cerebrovascular alterations that occur in AD and has been
shown to potentiate neuronal degeneration and cognitive im-
pairment [55–57]. In this study, it was demonstrated that
concentrations of Aβ1-40 that were previously found to induce
endothelial cells’ death cause time-dependent alterations in
Ca2+ and redox homeostasis in these brain cells.

Fig. 3 Aβ1-40 deregulates cytosolic Ca
2+ homeostasis in brain endothe-

lial cells. RBE4 cells transfected with aequorin chimera that localizes in
the cytosol were treated with Aβ1-40 (2.5 μM) for 1, 3, 6, 12, or 24 h.
Cells were stimulated with ATP (100 μM), and cytosolic Ca2+ responses

corresponding to the maximum peak after the addition of ATP were
analyzed (c). All traces correspond to single representative experiments
(a and b), and graphic bar represents the means±SEM of at least eight
independent experiments. *p<0.05 significantly different from control
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The precise concentration that Aβ can reach in the paren-
chyma or microvessels of human AD brain is not known.
However, the study of Miao and collaborators in brain
microvessels isolated from AD transgenic mice demonstrates
that Aβ concentration is above 400 ng/mg total protein and is
higher than that determined in the brain parenchyma [12].
Nevertheless, the concentration of Aβ along microvessels is
variable, and quantifications, which are usually performed in
homogenates, correspond to an average value and do not
mirror the concentration in each point of microvessels. There-
fore, the concentration of Aβ to which some endothelial cells
are exposed can be very high and similar to that used in the
present study. Finally, some reports describe the use of higher
concentrations, namely, 50 to 200 μM Aβ1-42, the less con-
centrated Aβ form in brain parenchyma and microvessels

[12], to treat vascular cells [58, 59]. On the other hand, the
Aβ1-40 used is enriched in species with more than 50 kDa,
which were demonstrated to be highly toxic [60–64] and that
induce the intracellular accumulation of Aβ in brain endothe-
lial cells [33, 49].

Previously, we have shown that Aβ1-40 depletes ER Ca2+

stores and induces a sustained rise of [Ca2+]cyt [33]. In the
present study, we showed that Aβ1-40 also diminishes the
capacity to restore Ca2+ levels in the ER lumen upon Ca2+

depletion and found that Aβ1-40 interferes with the cytosolic
and mitochondrial responses to ER Ca2+ depletion triggered
by ATP. These changes were associated with alterations in the
levels of proteins involved in Ca2+ homeostasis in the ER,
plasma membrane, and mitochondria. The early increase ob-
served in Aβ1-40-treated cells in the levels of SERCA2, which

Fig. 4 Levels of proteins
involved in the regulation of Ca2+

homeostasis are altered by Aβ1-40

in brain endothelial cells. Protein
levels of SERCA2 (a and b), total
IP3Rs (a and c), total VDACs (a
and d), STIM1 (a and e), and
Orai1 (a and f) were quantified by
immunoblotting in cellular
extracts obtained from RBE4
cells treated with Aβ1-40 (2.5 μM)
for 3, 6, 12, or 24 h. Anti-β-
tubulin or anti-actin antibodies
were applied as protein loading
controls and used to normalize the
levels of proteins of interest. The
results were calculated relatively
to control values and represent the
means±SEM of at least eight
independent experiments.
*p<0.05, **p<0.01, and
***p<0.001 significantly
different from untreated cells
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is responsible for ER Ca2+ load, can represent a compensatory
mechanism to avoid ER Ca2+ depletion. The rise in [Ca2+]cyt
that occurs in Aβ1-40-treated endothelial cells is probably
responsible for the reduction in the levels of the SOCE com-
ponents STIM1 and Orai1, which become unable to compen-
sate ER Ca2+ depletion in Aβ1-40-treated cells. In addition,
this decrease can promote Aβ generation and toxicity since
overexpression of STIM1 and Orai1 was shown to signifi-
cantly reduce Aβ secretion [65]. The release of ER Ca2+ by
IP3Rs and consequent mitochondrial Ca2+ overload was dem-
onstrated in several apoptosis paradigms [66–68]. Previous
studies in cultured rat cortical neurons demonstrated that Aβ1-

40 and Aβ1-42 increase the release of Ca2+ from ER through
IP3Rs and also by RyRs, leading to mitochondrial depolariza-
tion and release of pro-apoptotic factors [32, 61, 69]. Accord-
ingly, inhibition of ER Ca2+ release was shown to reduce Aβ
levels and to preserve synaptic function in hippocampal slices
from an ADmice model [32, 61, 69]. Mitochondrial VDAC is
physically linked to the ER-resident IP3Rs through GRP75
and is involved in Ca2+ communication between the ER and
mitochondria [68, 70, 71]. Recently, increased IP3R and
VDAC levels were found in primary hippocampal neurons
treated for 8 and 48 h with nanomolar Aβ1-40 and Aβ1-42, as
well as an increase in the number of ER-mitochondria contact

points and [Ca2+]mit [28]. Here, the total levels of VDAC and
IP3R decreased after 24-h exposure of endothelial cells to
higher Aβ1-40 doses (micromolar range), and consequently,
the Ca2+ signals between ER and mitochondria were dimin-
ished, possibly in an attempt to overcome excessive ER-to-
mitochondria Ca2+ transfer and mitochondrial Ca2+ overload
and to prevent activation of mitochondria-mediated apoptotic
cell death pathways. Although [Ca2+]mit returned to values
similar to control, Aβ-induced endothelial cell death was not
avoided since it was previously shown that Aβ1-40 induces
mitochondria-dependent apoptosis in vascular endothelial
cells through the release of cytochrome c, activation of
caspase-9 and caspase-3, and translocation of the apoptosis-
inducing factor frommitochondria to the nucleus [33, 72–74].
Furthermore, the inhibition of ER Ca2+ release is able to
prevent mitochondrial membrane depolarization induced by
Aβ1-40 [33].

When [Ca2+]ER decreases, the ER-resident STIM protein
co-localizes with the plasma membrane-Orai protein, promot-
ing the entry of Ca2+ into the cell through SOCE. The increase
in intracellular Ca2+ levels in brain endothelial cells after the
activation of SOCEwas shown to trigger the reorganization of
the cytoskeleton, which disrupts the endothelial cell barrier
and increases blood-brain barrier permeability [75] that is

Fig. 5 Aβ1-40 affects redox
homeostasis in brain endothelial
cells. After treatment for 3, 6, 12,
or 24 h with Aβ1-40 (2.5 μM),
DCF fluorescence was analyzed
in RBE4 cells in order to analyze
the levels of ROS (a). In cellular
extracts obtained from control
and treated cells, GSH (b) and
GSSG (c) levels were quantified
and the ratio GSH/GSSG was
calculated (d). Data were
normalized to control, and the
results represent the means±SEM
of at least five independent
experiments performed in
duplicate. *p<0.05, **p<0.01,
and ***p<0.001 significantly
different from control

Mol Neurobiol (2015) 51:610–622 617



Fig. 6 Aβ1-40 activates an
oxidative stress response in brain
endothelial cells. RBE4 cells were
treated with Aβ1-40 (2.5 μM) for
3, 6, 12, or 24 h, and the protein
levels of Nrf2 (a and b), GRd (a
and c), PGC1α (a and d), HIF-1α
(a and e), VEGF (a and f), and
GLUT1 (a and g) were quantified
by immunoblotting using total
cell lysates or nuclear extracts.
Anti-GAPDH and anti-TATA box
protein (TBP) antibodies were
applied as protein loading
controls in total or nuclear
extracts, respectively, and used to
normalize the levels of the
proteins of interest. The results
were calculated relatively to
control values and represent the
means±SEM of at least eight
independent experiments.
*p<0.05, **p<0.01, and
***p<0.001 significantly
different from control
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found in AD patients [76]. During physiological conditions,
Ca2+ from SOCE is rapidly captured by adjacent mitochondria
to maintain the [Ca2+]cyt at low levels, allowing the entry of
more Ca2+. Mitochondrial Ca2+ is then exported to the cytosol
through the Na+/Ca2+-exchanger in regions close to the ER
and captured by SERCA to reestablish the [Ca2+]ER [77].
However, oxidants can decrease the activity of the Na+/
Ca2+-exchanger, plasma membrane Ca2+-ATPases, and
SERCA and thus impair the reestablishment of [Ca2+]ER,
causing prolongedmitochondrial Ca2+ elevation [39, 78]. This
is in accordance with the present results that show a temporal
correlation between oxidative stress, ER Ca2+ entry, and
[Ca2+]mit. Because the ER has several Ca2+-dependent chap-
erones, the reduction of [Ca2+]ER can induce ER stress as
previously demonstrated in RBE4 cells and other cell types
treated with Aβ1-40 and also in AD animal models and AD
patients [33, 79, 80].

Stimulation of RBE4 cells with ATP activates metabotropic
ATP receptors in the plasma membrane leading to IP3 gener-
ation that activates IP3Rs in the ER and releases Ca2+ from this
organelle, which in turn increases cytosolic and mitochondrial
[Ca2+]. However, we cannot exclude the contribution of acti-
vated ionotropic ATP receptors since, like the metabotropic
receptors, they are abundant in brain microvascular endothe-
lial cells [81].

The alterations in Ca2+ homeostasis, namely, the increase
in [Ca2+]mit in brain endothelial cells, can increase ROS pro-
duction [35, 42]. Numerous studies establish a close relation-
ship between oxidative stress and endothelial dysfunction [48,
82]. Furthermore, it was previously demonstrated in cortical
neurons that the release of Ca2+ from the ER induced by Aβ1-

40 increases the levels of intracellular ROS [83]. Moreover,
Aβ1-40 was shown to increase the levels of ROS in microvas-
cular endothelial cells isolated from rat brain [84]. The de-
crease in ER Ca2+ content causes ER stress and consequently
upregulates GADD153 (growth arrest and DNA damage-
inducible protein 153)/CHOP, a pro-apoptotic transcription
factor that activates GADD34, which in turn increases ROS
generation [85]. Accordingly, the time-dependent change in
GADD153/CHOP levels that was recently observed in RBE4
cells treated with Aβ1-40 [33] correlates with the alterations
that were now found in ROS levels. Moreover, ER stress and
ATP depletion resulting from increased [Ca2+]mit in Aβ1-40-
treated RBE4 cells, together with SERCA2 inhibition, can
block general protein translation and synthesis [31, 33, 86,
87]. This contributes to a general decrease in protein levels
and in a delay in cellular responses dependent of protein
synthesis particularly those that follow the secretory pathway,
such as membrane Ca2+ channels.

In addition to a time-dependent increase in ROS levels, a
significant depletion of the antioxidant GSH in brain endothe-
lial cells treated with Aβ1-40 that was accompanied by an
increase in GSSG was also detected, leading to the reduction

of the GSH/GSSG ratio. The recovery of GSH levels at 24 h
can be due to antioxidant responses induced by the activation
of protein kinase RNA-like endoplasmic reticulum kinase
(PERK) and subsequent upregulation of the activating tran-
scription factor 4 and Nrf2 in order to restore cellular homeo-
stasis [33, 88]. Both transcription factors are involved in
antioxidant responses, leading to expression of proteins in-
volved in GSH biosynthesis [88–90]. Accordingly, the levels
of glutathione reductase, which converts GSSG in GSH, were
upregulated by prolonged exposure to Aβ1-40 and might un-
derlie the recovery of GSH levels in Aβ1-40-treated cells. ROS
can also activate Nrf2 in vascular endothelial cells, and the
neutralization of ROS suppresses Nrf2 activation [91]. There-
fore, the restoration of Nrf2 levels at 24 h in Aβ1-40-treated
cells can result from the increase of antioxidant defenses that
seems to compensate the increase of ROS and also because
ER stress is normalized to values similar to those of untreated
cells [33]. Another transcription factor that can be translocated
to the nucleus in the presence of ROS is HIF-1α [92]. Under
normoxic conditions, HIF-1α in the cytosol is hydroxylated
by oxygen-dependent prolyl hydrolases that leads to
polyubiquitination and rapid degradation by the proteasome.
Under low levels of oxygen, HIF-1α is not hydroxylated and
consequently is translocated to the nucleus, dimerizes with the
constitutively expressed HIF-1β, and regulates hypoxia-
related genes [93]. The increased ROS production in mito-
chondria during hypoxia is also necessary and sufficient to
activate HIF-1α [94, 95]. Furthermore, an increase in ROS
production and oxidative stress was found during hypoxia in
different cell types [96, 97]. Here, the levels of HIF-1α in the
nucleus increased in Aβ1-40-treated cells, which was correlat-
ed with changes in GSSG levels (an oxidative stress maker)
and with the previously reported proteasomal inhibition [49,
98, 99]. In this way, the degradation of HIF-1α in the protea-
some diminishes and contributes to the translocation of HIF-
1α to the nucleus where it induces the expression of cell
survival and angiogenic genes, such as VEGF, and glucose
transporters, namely, GLUT1 and GLUT3 [93, 100], as ob-
served in brain endothelial cells treated with Aβ1-40.

Conclusion

Exposure of rat brain endothelial cells to a toxic dose of Aβ1-

40 deregulates Ca
2+ and redox homeostasis, which is accom-

panied by the induction of compensatory responses. However,
these mechanisms are not able to counteract the deleterious
effects of Aβ1-40, and endothelial cells die by apoptosis, as
previously demonstrated.
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