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Detection of p62/SQSTM1 Aggregates in Cellular Models
of CCM Disease by Immunofluorescence
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Abstract

Cerebral cavernous malformations (CCM) is a familial or sporadic rare disorder that is characterized by
capillary vascular lesions with a mulberry-like appearance on MRI scans. Three distinct genes have been
associated to CCM disease, known as CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10. Loss-of-
functions mutations on these genes lead to deregulation in multiple signaling pathways, thereby resulting in
disturbed vessel organization and function. Insufficient autophagy has been observed upon downregulation
of all three CCM genes, both in cells and human patient tissues, revealed as aberrant accumulation of the
autophagy receptor p62/SQSTM1. The autophagic process is conceived as an adaptive response to stress
and is essential for the maintenance of cellular homeostasis. The aim of this review is to briefly summarize
the current knowledge on the role of autophagy in CCM disease and to furnish a detailed protocol for
detecting and measuring p62/SQSTM1 cytoplasmic aggregates through immunofluorescence technique.
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1 Introduction

Cerebral cavernous malformations (CCMs) are common vascular
malformations that occur frequently in the central nervous system.
CCM lesions have a prevalence of about 0.1–0.5% in the general
population [1, 2]. Usually, the symptomatology includes weakness,
numbness, vision changes, or severe headache. Occasionally, sei-
zures also can occur, as well as CCMs rupture, leading to hemor-
rhagic stroke or death. Although CCMs mostly occur as a single
formation, about 20% of affected people have a familial (inherited)
form of the disease. Indeed, CCMs have been linked to loss-of-
function mutations in three distinct genes, named CCM1
(KRIT1), CCM2 (MGC4607), and CCM3 (PDCD10)
[3, 4]. The last 10 years of research on the molecular mechanisms
underlie CCM disorder unequivocally revealed the pleiotropy of
CCM genes since their inactivation leads to deregulation of
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different cellular processes, including angiogenesis, redox homeo-
stasis, endothelial-to-mesenchymal transition, and autophagy
[5, 6].

1.1 The Autophagic

Process: The Role

of p62/SQSTM1

Macroautophagy (herein referred to as autophagy) and the ubiqui-
tin-proteasome system (UPS) are the two major quality control
pathways responsible for cellular homeostasis [7, 8]. Although
UPS is deputed for the degradation of the majority of proteins,
large intracellular structures, including damaged organelles (i.e.,
mitochondria), intracellular bacteria, or protein aggregates, are
exclusively degraded by the autophagic route [9, 10]. At first, the
selected cargos are sequestered into double-membrane vesicles,
called autophagosomes, and after autophagosomes-lysosomes
fusion, their degradation is mediated by lysosomal enzymes
[11]. This occurs through the activity of specific elements, which
are able to recognize selected substrates and designate them to
autophagic degradation [12]. The class of proteins known as autop-
hagic receptors include the p62/SQSTM1 (sequestosome-1) [13],
NBR1 (neighbor of BRCA1) [14], NDP52 (nuclear dot protein
52 kDa) [15], Tax1BP [16], and Optineurin [17]. They share the
capacity to identify degradation signals on cargo substrates and also
interact with ATG8s, a family of proteins located in the inner
surface of the forming autophagosome. In mammals, the prevailing
autophagy-targeting label is ubiquitin, a small (8.6 kDa) signaling
molecule that is bound to lysine residues by a sequential cascade
that involves ubiquitin-activating (E1s) and -conjugating (E2s)
enzymes, as well as ubiquitin ligases (E3s) [18].

The role of p62/SQSTM1 as an autophagy receptor mainly
depends on three essential features: (1) p62/SQSTM1 employs its
C-terminal UBA domain to bind to poly-ubiquitinated targets,
although in some cases, the interaction occurs in an ubiquitin-
independent manner; (2) it interacts with ATG8s through its
LC3-interacting region (LIR); (3) p62/SQSTM1 polymerizes
and co-aggregates with the target substrates, facilitating the conju-
gation of the complex with ATG8s in the forming autophagosome.
This imply that p62/SQSTM1 aggregates are degraded together
with the cargos by autophagy. In multiple autophagy-deficient
contexts, as well as in various neurodegenerative diseases or liver
diseases, p62/SQSTM1 accumulates in cytoplasmic and nuclear
ubiquitinated inclusions [19–21]. Moreover, p62/SQSTM1 levels
increase upon multiple stress signals, including oxidative stress,
through a molecular route that involves the transcription factor
NRF2 [22], or inflammation, via the NF-κB pathway [23]. Under
resting conditions, the amounts of autophagy receptors are kept
low by continuous degradation. Conversely, during different stress-
ful scenarios, p62/SQSTM1 production is rapidly boosted, reason-
ably to prevent the toxic accumulation of damaged/ubiquitinated
structures. However, if there is no compensation by an adequate
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autophagic response, such as in some chronic disorders, aberrant
p62/SQSTM1 aggregates are formed inside the cytoplasm, thus
representing a distinct pathological signature that could contribute
to the progression of the disease.

1.2 Role

of Autophagy in CCM

Our group recently showed a defect in the normal autophagic flux
in cells depleted for CCM1, CCM2, or CCM3 genes. We observed
accumulation of p62/SQSTM1 clusters in CCM cells, leading to
the formation of large intracellular aggregates, especially in the
perinuclear area [24]. The insufficient autophagy is ascribed to
higher activation of the mTORC1 (mechanistic Target of Rapamy-
cin Complex 1) kinase, a master regulator of the autophagic pro-
cess. Under nutrient-rich conditions, mTORC1 phosphorylates
the ULK1/2 complex, thus inhibiting autophagy at early events
by limiting the formation of autophagosomes [25]. Moreover,
mTORC1 could affect autophagy by acting at the later stages of
the process, through inhibition of lysosomal functions. Pharmaco-
logical inhibition of mTOR, using Rapamycin analogues, restores
normal autophagic levels and mitigates other molecular derange-
ments associated to CCMs, such as ROS (reactive oxygen species)
overproduction and endothelial-to-mesenchymal transition
[24]. The crucial role of mTOR-dependent autophagy inhibition
in the pathogenesis of CCM is supported by other correlative
observations, including vessel abnormalities in autophagy-deficient
endothelial cells [26], the low autophagy levels in CCM3-depleted
senescent cells [27], or overactive endothelial mTORC1 signaling
in human arteriovenous malformations [28]. mTOR inhibitors are
extensively used for the treatment of vascular anomalies [29], and
different therapeutic approaches that have been proposed for
CCM, such as Vitamin D3, statins, or sulindac sulfate, also trigger
autophagy through mTOR inhibition [30]. Importantly, a recent
pharmacological screening aimed to uncover novel molecules for
the treatment of familial forms of CCM identified ridaforolimus as
one of the few compounds able to induce some degree of rescue in
multiple CCM models [31]. The non-prodrug, rapamycin ana-
logue ridaforolimus acts as a potent mTOR inhibitor, showing a
strong in vivo stability and antitumor activity [32].

Overall, there are several lines of evidence that deregulation of
the mTOR signaling, with consequent suppression of the autopha-
gic process, is one of the key events that arises from CCM genes
loss-of-function, therefore contributing to CCM pathogenesis.

Here, we describe an immunofluorescence-based technique
aimed to visualize and quantify p62/SQSTM1 aggregates in endo-
thelial cell models of CCM. This method could be used to valuate
autophagy impairment in different pathological scenarios (not only
CCM) or upon stimuli of various nature.
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2 Materials

2.1 Cell Culture

and Transfections

1. Human umbilical vein endothelial cells (HUVEC).

2. Medium 200.

3. Low serum growth supplement (LSGS).

4. 6-well and 24-well plates.

5. Lipofectamine™ RNAiMAX Transfection Reagent (Thermo
Fisher Scientific, Cat. no. 13778150).

6. siRNA CCM1 (Thermo Fisher Scientific, Cat. no. AM51331,
ID 15469).

7. siRNA CCM2 (Thermo Fisher Scientific, Cat. no. AM16708,
ID 147904-05-06).

8. siRNA CCM3 (Thermo Fisher Scientific, Cat. no. AM16708,
ID 136322-23-24).

9. Silencer™ Negative Control No. 1 siRNA (Thermo Fisher
Scientific, Cat. no. AM4611).

2.2 Immuno-

fluorescence

1. Glass coverslips (13 mm).

2. Parafilm M.

3. 1� Phosphate buffered saline (PBS).

4. 4% Paraformaldehyde (PFA) solution. For 500 mL of 4% PFA,
add 400 mL of 1� PBS to a glass beaker on a stir plate in a
ventilated hood. Heat while stirring to approximately
50–55 �C. Pay attention that the solution does not boil. Add
20 g of PFA powder to the heated PBS and dissolve it over-
night. Do not add NaOH. Adjust the volume to 500 mL with
1� PBS. The solution can be aliquoted and frozen at �20 �C.

5. Triton X-100 solution.

6. PBST or permeabilization solution: PBS + 0.05% Triton
X-100.

7. Blocker Non-Fat Dry Milk.

8. PBSTM or blocking solution: PBST +5% Non-Fat Dry Milk.

9. Anti-p62/SQSTM1 antibody produced in rabbit (Sigma-
Aldrich, Cat. no. P0067).

10. Goat anti-Rabbit IgG (H + L) Secondary Antibody, DyLight
594 (Thermo Fisher Scientific, Cat. no. 35560).

11. Microscope slides.

12. ProLong™ Diamond Antifade Mountant (Thermo Fisher Sci-
entific, Cat. no. P36965).
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2.3 Equipment Setup p62 accumulation/aggregation could be imaged and recorded by
using a confocal microscope, equipped with the appropriate filter
set. Typically, correct sampling can be achieved by using 60� lens
or higher with numerical aperture (N.A.) >1.3, and high-
resolution CCD or CMOS cameras (with pixel size <8 μm). In
this protocol, digital images were acquired with confocal micro-
scope (Zeiss LSM510) using a 63 � 1.4 NA Plan-Apochromat
oil-immersion objective.

3 Methods

3.1 Cell Culture

and Transfections

1. Day 1: perform the CCM1, CCM2, or CCM3 silencing in
HUVEC cells using a “Reverse Transfection” protocol. Pre-
pare complexes (siRNA(s) + RNAiMAX Transfection Reagent)
inside the well, and then add cells and medium. Use a 6-well
plate, with a final siRNA concentration of 40 nM in a final
volume of 1 mL. In the “Reverse Transfection” protocol, a
higher amount of cells (250–300.000 cells � well) is required.
For CCM2 and CCM3 silencing, use a mix of the siRNAs
indicated above (see Note 1).

2. Day 2: after 24 h, add 1 mL of medium in each well to reach a
final volume of 2 mL (see Note 2).

3. Day 3: trypsinize cells and seed them on glass coverslips
(13 mm in diameter), at a concentration of 50–60.000 cells
per well.

4. Day 4: after 72 h of silencing, a % of knock-down>75 has been
achieved (see Note 3).

3.2 Fixation,

Permeabilization,

and Blocking

1. Discard the medium and rinse quickly with PBS.

2. Place the 24-well plate on the top of ice and add 500 μL of cold
4% PFA solution for each well. Incubate for 10 min at 4 �C (see
Note 4).

3. Wash three times with PBS for 10 min each under gentle
shacking at room temperature (RT).

4. During incubation with PBS, prepare the PBST solution (see
Note 5).

5. Add 500 μL of PBST and incubate for 10 min at RT.

6. Prepare the PBSTM solution (see Note 6).

7. Wash two times with PBS.

8. Add 1 mL of PBSTM. Incubate for 1 h at RT.

3.3 Antibodies

Incubation

1. For the primary antibody incubation, firstly prepare a wet
chamber. Use a Petri dish (150 mm in diameter) and cover it
completely with tinfoil. On the bottom of the Petri, apply a
layer of parafilm and fix it to avoid wrinkles or irregularities.
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2. Dilute the p62/SQSTM1 primary antibody in PBSTM [dilu-
tion 1:50–1:75] (see Note 7).

3. For each sample, put 30 μL of diluted antibody on the top of
the parafilm (Fig. 1), paying attention to avoid bubbles
formation.

4. Carefully remove the coverslips from the 24-well plate, gently
drain them on clean paper and put on the wet chamber, ensur-
ing that the cells are in direct contact with the antibody.

5. Add a piece of wet paper inside the chamber (Fig. 1) and
incubate overnight at 4 �C.

6. Carefully place the coverslips in a new 24-well plate, and wash
three times with PBS for 10 min each under gentle shacking
at RT.

7. Dilute the Goat anti-Rabbit IgG (H + L) Secondary Antibody,
DyLight 594 in PBSTM [dilution 1:500–1:1000] and protect
it from light (see Note 8).

8. Add 1 mL of diluted secondary antibody per well and gently
shake for 1 h at RT, protected from light.

9. Wash three times with PBS for 10 min each, under gentle
shacking at RT, protected from light.

10. For each sample, put a drop of ProLong™ Diamond Antifade
Mountant on a microscope slides.

11. Carefully remove the coverslips from the 24-well plate, gently
drain them on clean paper and put on the microscope slide,
ensuring that the cells are in direct contact with the Prolong.

12. Allow to dry for 2–3 h at RT (or overnight at 4 �C), protected
from light (see Note 9).

Fig. 1 Image of a wet chamber for immunofluorescence. The primary antibody is
diluted in PBS + 0.05% Triton X-100 + 5% non-fat dry milk (PBSTM)
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3.4 Microscope

Acquisition of Images

and Analysis

1. Add the immersion oil on the objective.

2. Place the slide on the microscope stage.

3. For high-resolution imaging, use the standard binning mode
1 � 1 (each logical pixel is equal to one physical pixel).

4. Acquire multiple images in manual mode or by using motor-
ized stage, if the microscope is equipped. Use the same camera
and microscope settings among the different conditions (see
Note 10) (Fig. 2).

5. Open Fiji software [33] and load the files output.

6. Remove the background, setting the rolling ball to a size of
approximately 1 μm (Menu Process ! Subtract Background).

7. Threshold image to isolate p62/SQSTM1 dots from back-
ground (Menu Image ! Adjust ! Threshold). Choose the
most appropriate thresholding algorithms.

8. Measure/count p62/SQSTM1 dots using the “Analyze parti-
cles” tool (Menu Analyze! Analyze particles). Set a minimum
filter size to 2, check the “Pixel units” and “Display results”
options (see Note 11).

4 Notes

1. HUVEC should be used at low passages number (2–6) to
increase transfection efficacy.

2. If transfection induces massive cell death, discard the medium,
wash two times with PBS, and add 2 mL fresh medium per
well. Alternatively, increase the number of cells (up to
600–700.000 cells per well).

3. For CCM1 silencing, transfection with a single siRNA
(ID 15469) is sufficient to induce depletion of more than 90%.

Fig. 2 Immunofluorescence images of HUVEC, silenced with the indicated siRNAs and stained for
p62/SQSTM1. Note the numerous p62/SQSTM1 aggregates in CCM1-, CCM2-, and CCM3-silenced cells.
Magnification in insets. Scale bar, 10 μm. Images were acquired with confocal microscope Zeiss LSM510
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4. To obtain a good p62/SQSTM1 staining, the 4% PFA solution
has to be cool. If the solution was previously frozen, put it at
4 �C for 5–6 h (or the day before), allowing a slow defrost.

5. The amount of Triton X-100 can be increased up to 0.1%.

6. 5% Bovine serum albumin (BSA) can be used instead of non-fat
dry milk.

7. It is important to prepare a negative control (without primary
antibody) to recognize the non-specific signals that might
derive from fluorescent dyes.

8. Other fluorescent-conjugated secondary antibodies (depend-
ing on the microscope filter set) can be used. We obtained good
results with Goat anti-Rabbit IgG (H + L) Secondary Anti-
body, DyLight 488 (Cat. no. 35552).

9. To keep the coverslips in place, it could be useful to paint
around the edges with nail varnish.

10. In order to obtain statistical significance, collect a number of at
least 20 images per sample. Each condition should be prepared
in triplicate and at least three independent experiments should
be performed.

11. If the image contains multiple cells, divide the p62/SQSTM1
aggregates for the number of cells.
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