
Mitochondria occupy a central position in the biology of 
most eukaryotic cells, including all the cells of the cardio­
vascular system, because mitochondria have a major 
role in catabolic and anabolic metabolism, regulation of 
intracellular Ca2+ homeostasis, initiation of inflamma­
tory reactions, and control of multiple pathways culmi­
nating in regulated cell death (RCD)1–4. In line with this 
notion, the mitochondrial network is constantly sub­
jected to a tight quality-​control system that segregates 
dysfunctional mitochondria and delivers them to lyso­
somes for degradation5,6. Such a mechanism, commonly 
known as mitophagy, involves not only the core molecu­
lar machinery for autophagy7 but also a set of dedicated 
proteins that are required for the optimal recognition of 
damaged mitochondria8–10.

A tight control on mitochondrial fitness is para­
mount for the preservation of cardiovascular homeo­
stasis for at least four reasons11. First, cardiomyocytes 
heavily rely on fatty acid-​driven oxidative phosphoryl­
ation for ATP production, at least in physiological set­
tings12. Thus, a decrease in the bioenergetic efficiency 
of the mitochondrial network can have a direct detri­
mental effect on the contractile capacity of cardiomyo­
cytes. Second, Ca2+ fluxes are at the core of overall 
cardiac activity1. Therefore, defects in the capacity of 
the mitochondrial network (in conjunction with the 
endoplasmic reticulum) to regulate Ca2+ homeostasis 
can alter cardiac functions such as electrical conduc­
tion. Third, physiological inflammatory homeostasis 
is particularly important not only for normal cardiac 
functions13 but also for the preservation of vascular 

compartments14. Thus, damaged mitochondria accu­
mulating in the cytosol of cardiomyocytes or endothe­
lial cells can drive pathogenic inflammatory responses. 
Finally, the integrity of the cardiovascular system is cru­
cial for optimal contractile and circulatory functions15. 
Severe mitochondrial dysfunction and/or the accumu­
lation of permeabilized mitochondria (beyond a thresh­
old that depends on multiple parameters) can initiate 
several variants of RCD that culminate in pathological 
tissue loss (Fig. 1).

In line with these observations, mitochondrial defects 
have been involved, at least to some extent, in the patho­
genesis of a variety of cardiovascular disorders, includ­
ing (but not limited to) myocardial infarction (MI), 
cardiomyopathies of different aetiology, some forms of 
arrhythmia, hypertension, atherosclerosis, and other 
vascular conditions16,17. Starting in the late 1990s, the 
identification of mitochondrial dysfunction as a cen­
tral aetiological determinant of cardiovascular disease 
(CVD) drove an intensive wave of preclinical and clini­
cal investigation aimed at the development of novel tar­
geted therapies18. Thus far, the results of such an effort 
have been disappointing, as no molecules specifically 
conceived to target mitochondria are currently avail­
able for use against CVD in clinical settings19. In this 
Review, we discuss the rationale for using mitochondria-​
targeting agents (MTAs) in the treatment of CVD, dis­
sect the obstacles that have limited their development 
over the past 2 decades, and put forward strategies that 
might unleash the full potential of these promising — but  
hitherto unrealized — therapeutic tools.

Regulated cell death
(RCD). A form of cell death that 
relies on the activation of a 
genetically encoded machinery 
and which, therefore, can be 
retarded or accelerated with 
specific pharmacological or 
genetic interventions.

Autophagy
Evolutionarily conserved 
cellular process that 
culminates with the lysosomal 
degradation of ectopic, 
supernumerary, dysfunctional, 
or potentially dangerous 
cytoplasmic entities (of 
endogenous or exogenous 
derivation).
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Therapeutic potential of MTAs
Targeting mitochondria from multiple angles has been 
associated with beneficial effects in a variety of experi­
mental CVD models (Tables 1,2). However, limited 
benefits have been documented in clinical trials investi­
gating the safety and efficacy of MTAs for the treatment 
of CVD, as discussed below.

Mitochondrial metabolism. Healthy cardiomyocytes 
satisfy their elevated energy needs by catabolizing fatty 
acids (via β-​oxidation), branched-​chain amino acids, and, 
to a lesser extent, ketone bodies (via ketolysis) to fuel the 
tricarboxylic acid (TCA) cycle and drive ATP produc­
tion via the mitochondrial respiratory chain (Box 1). By 
comparison, pyruvate derived from glycolysis contrib­
utes minimally to ATP synthesis in the healthy heart11. 
Such a predominantly mitochondrial metabolic profile 

shifts in the course of numerous cardiac pathologies. 
Heart failure (HF) is accompanied by a gradual decline 
in the bioenergetic reserve capacity of the myocardium, 
which — beyond a specific threshold — can no longer 
be compensated for by endogenous mechanisms20. In 
multiple variants of cardiomyopathy culminating with 
HF, cardiomyocytes undergo metabolic reprogramming 
involving decreased β-​oxidation and branched-​chain 
amino acid metabolism coupled with intracellular lipid 
deposition and increased glucose utilization21–24. The 
TCA cycle intermediate succinate accumulates in the 
ischaemic myocardium, and such an accumulation is 
mechanistically linked to oxidative damage at reperfu­
sion25 (see below). Along similar lines, TCA cycle activity 
is impaired 6 weeks after MI26, potentially representing 
an early maladaptive phase of the surviving tissue.

The molecular mechanisms underlying metabolic 
reprogramming in the diseased myocardium remain 
to be fully elucidated, although a role for specific tran­
scription factors has been postulated. For instance, 
nuclear receptor subfamily 2, group F, member 2 
(NR2F2; also known as COUP-​TF2) is upregulated in 
patients with HF, and transgene-​driven Nr2f2 over­
expression in mice favours dilated cardiomyopathy 
accompanied by pathological metabolic remodelling27. 
Similarly, hypoxia-​inducible factor 1α (HIF1α) initi­
ates a transcriptional programme involving peroxisome 
proliferator-​activated receptor-​γ (PPARγ) that leads to 
increased glucose uptake and consequent lipid accumu­
lation, apoptotic cell death, and contractile dysfunction21. 
Corroborating an aetiological role for this transcriptional 
module, ventricular-​specific deletion of Hif1a prevents  
pressure-​overload-induced cardiomyopathy in mice21.

Additional metabolic functions ensured (at least in 
part) by mitochondria are relevant for CVD, includ­
ing the folate cycle. An efficient folate cycle is indeed 
required for the optimal conversion of homocysteine 
into methionine, and defects in this pathway, including  
genetic variants in MTHFR (which encodes methyl­
enetetrahydrofolate reductase) are associated with 
an increased incidence of vascular disorders (such as 
thrombosis and atherosclerosis) secondary to, or at least 
paralleled by, homocysteine accumulation28. Of note, 
several mutations in mitochondrial or nuclear genes 
coding for components of the mitochondrial respiratory  
chain have been associated with familial cardiomyo­
pathies in humans29. Moreover, experimental interventions 
inducing respiratory defects in myocardial cells, such as  
the tissue-​specific deletion of Aifm1 (which encodes 
apoptosis inducing factor mitochondria associated 1)30 
or Tfam (which encodes mitochondrial transcription 
factor A; TFAM)31, result in spontaneous, early-​onset 
cardiomyopathy. Taken together, these observations 
exemplify the involvement of mitochondrial metabolic 
dysfunction in CVD.

Early clinical trials testing l-​carnitine supplemen­
tation, which (among other effects) favours the mito­
chondrial uptake of cytosolic fatty acids, in patients 
recovering from acute MI documented some degree 
of efficacy in reducing the incidence or severity of HF, 
left ventricular enlargement, arrhythmias, and car­
diac death32,33. However, subsequent studies did not 

Key points

•	Mitochondrial dysfunction is involved in the pathogenesis of multiple cardiovascular 
disorders, including myocardial infarction, cardiomyopathies of various aetiologies, 
arrhythmias, hypertension, and atherosclerosis.

•	Mitochondria are essential for the physiological activity of the cardiovascular system 
owing to their crucial role in bioenergetic and anabolic metabolism and their central 
position in intracellular Ca2+ fluxes.

•	In addition to losing their physiological functions, damaged mitochondria actively 
drive inflammatory responses and waves of regulated cell death that contribute to 
the pathogenesis of cardiovascular disease.

•	An intensive wave of investigation attempted to develop mitochondria-​targeting 
agents for preventing or treating cardiovascular disorders in patients, with rather 
dismal results.

•	Molecules with improved pharmacological features, precise mechanistic insights into 
mitochondrial processes, and reconsidering the pathogenesis of some cardiovascular 
disorders are instrumental for the development of mitochondria-​targeting agents 
with clinical use.
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β-​Oxidation
Biochemical pathway whereby 
fatty acids are converted into 
acetyl-​CoA, which enters the 
TCA cycle, and NADH and 
FADH2, which fuel oxidative 
phosphorylation.

Ketolysis
Biochemical pathway whereby 
ketone bodies are converted 
into acetyl-​CoA, which enters 
the TCA cycle, and NADH, 
which fuels oxidative 
phosphorylation.



conclusively confirm these observations34,35. Moreover, 
oral l-​carnitine can be metabolized by the gut micro­
biota into trimethylamine N-​oxide (TMAO), a pro-​
atherogenic molecule36. Accordingly, individuals with 
high l-​carnitine levels and concurrently high TMAO 
levels in the blood are at increased risk of CVD and 
major adverse cardiac events36. Thus, the clinical devel­
opment of l-​carnitine for the treatment of CVD seems 
to be at an impasse.

The β-​oxidation inhibitor etomoxir has also been 
investigated in patients with congestive HF, with incon­
clusive results37,38. Conversely, perhexiline and trimetazi­
dine — which resemble etomoxir in their capacity to 
inhibit β-​oxidation (although to different degrees) — 
are currently approved in multiple countries (including 
Australia and Canada) as antianginal agents39. The thera­
peutic efficacy of perhexiline and trimetazidine has been 
proposed not to reflect a switch from fatty acid-​driven 
to glucose-​driven catabolism40 but instead to entail an 
entire rebalancing of carbon and nucleotide phosphate 
fluxes41 linked to autophagy activation42 (see below). 

Perhexiline is also effective (at least to some extent)  
in a subset of patients with cardiomyopathy40,43, but not in 
patients with left ventricular hypertrophy undergoing 
cardiac surgery44,45. Trimetazidine has been tested in 
multiple cohorts of patients with distinct cardiovascu­
lar disorders beyond angina, with variable degrees of 
efficacy46–49. Nonetheless, in the USA (but not in other 
countries), the clinical development of perhexiline and 
trimetazidine has been discontinued, presumably owing 
to a fairly narrow therapeutic index39.

5-Aminoimidazole-4-carboxamide ribonucleotide 
(AICAR; also known as acadesine) is an intermediate in 
the synthesis of inosine monophosphate that potently 
activates 5′-AMP-​activated protein kinase (AMPK),  
a metabolic sensor regulating mitochondrial biogenesis,  
dynamics, and metabolism50. Despite some promis­
ing preliminary results51,52, the clinical development of 
acadesine as a cardioprotective intervention in patients 
undergoing CABG surgery has been abandoned, at least 
in part owing to the lack of long-​term efficacy53. In sum­
mary, despite a robust rationale to target mitochondrial 
metabolism for the prevention or treatment of CVD, this 
therapeutic strategy remains largely unrealized.

Sirtuins. Sirtuins are a family of NAD+-dependent 
deacetylases and deacylases that control multiple 
aspects of cellular metabolism, including mitochon­
drial function and redox balance54. The mammalian 
genome encodes seven different sirtuins, three of which 
(SIRT3, SIRT4, and SIRT5) are localized to mitochon­
dria54. Pharmacological sirtuin activation mediates 
lifespan-​extending functions in multiple experimen­
tal models55–57, and defects in both mitochondrial and 
extramitochondrial sirtuins have been associated with 
a variety of cardiovascular disorders58. Sirt1−/− mice 
are viable but have considerable developmental heart 
defects59. In Sirt1+/− hearts, ischaemic preconditioning 
does not preserve cardiac function after ischaemia–
reperfusion injury, potentially linked to hyperacetyl­
ation of cytosolic proteins and consequent inhibition of 
autophagy60,61, whereas myocardial Sirt1 overexpression 
has cardioprotective effects along with deacetylation 
of cytoplasmic proteins60,62. Sirt3−/− mice show signs of 
cardiac hypertrophy and interstitial fibrosis at 8 weeks 
of age, spontaneously develop age-​related cardiomyo­
pathy, and are more sensitive than their wild-​type 
littermates to hypertrophic stimuli, including aortic 
constriction63,64. Such a susceptibility to cardiac hyper­
trophy reflects, at least in part, an increased propensity 
of the Sirt3−/− myocardium to undergo regulated necro­
sis upon mitochondrial permeability transition (MPT) as 
a consequence of cyclophilin D (CypD; also known 
as PPIF) hyperacetylation63,64 (see below). Conversely, 
transgenic Sirt3 overexpression has robust cardioprotec­
tive effects in mice63. Similar results to those observed in 
Sirt3−/− mice have been obtained with Sirt2−/−, Sirt5−/−, 
Sirt6−/−, and Sirt7−/− mice, and as shown with Sirt3 
overexpression, overexpression of Sirt2 specifically in 
the myocardium had cardioprotective effects65–68. By 
contrast, Sirt4−/− mice seem to be less susceptible to 
angiotensin-​II-induced cardiac hypertrophy than their 
wild-​type counterparts, whereas cardiomyocyte-​specific 
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Fig. 1 | Contribution of mitochondrial dysfunction to cardiovascular disease.  
In physiological conditions, healthy mitochondria support the functions of virtually  
all cells from the cardiovascular system by ensuring optimal catabolic and anabolic 
metabolism and regulating the intracellular trafficking of Ca2+. Additionally , an intact 
mitochondrial network promotes the preservation of inflammatory homeostasis and 
tissue integrity by preventing the activation of signal transduction cascades that lead  
to the release of pro-​inflammatory factors and regulated cell death. In addition to being 
accompanied by metabolic derangements and alterations in intracellular Ca2+ fluxes, 
mitochondrial dysfunction favours the establishment of an inflammatory milieu and 
facilitates regulated cell death, which culminates with tissue loss. By efficiently eliminating 
dysfunctional mitochondria that originate as a consequence of physiological cellular 
functions or accumulate in the context of pathological cues, mitophagy has a major role 
in the preservation of cardiovascular homeostasis.

Folate cycle
Biochemical pathway 
catalysing the cyclic conversion 
of tetrahydrofolate, 10-formyl-​
tetrahydrofolate (which feeds 
into purine synthesis), 
5,10-methylenetetra
hydrofolate, and 5-methyl-​
tetrahydrofolate (which feeds 
into methionine metabolism).

Mitochondrial permeability 
transition
(MPT). Rapid loss of the ionic 
barrier function of the inner 
mitochondrial membrane, 
culminating in mitochondrial 
breakdown and regulated 
necrosis.
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Table 1 | genetic studies implicating mitochondrial functions in cardiovascular physiology in mice

Mouse model Specificity Phenotype refs

Atg5−/− • Cardiomyocytes
• In adults or nonregulated

Cardiac hypertrophy and contractile dysfunction leading to premature 
death, accompanied by pronounced mitochondrial defects

120,121

Bnip3l−/− • Whole body
• Nonregulated

Cardiac hypertrophy with reduced left ventricular contractile function 
at 60 weeks of age

119

Bnip3l−/−Bnip3−/− • Cardiomyocytes (Bnip3l−/−) 
and whole body (Bnip3−/−)

• Nonregulated

Cardiac hypertrophy with reduced left ventricular contractile function 
at 30 weeks of age

119

Dnm1l−/− • Cardiomyocytes
• In adults

Lethal dilated cardiomyopathy associated with PARK2 accumulation, 
which can be partially rescued by deletion of Park2

117

DNM1L-​C452F • Whole body
• Nonregulated

Monogenic dilated cardiomyopathy associated with considerable 
mitophagic defects

93

Fbxo32−/− • Whole body
• Nonregulated

Premature death due to cardiac degeneration associated with deficient 
autophagic responses

122

Lamp2−/− • Whole body
• Nonregulated

Vacuolar myopathy affecting cardiac and skeletal muscle, similar to 
Danon disease

123

Mfn1−/−Mfn2−/− • Cardiomyocytes
• In adults

Cardiomyocyte dysfunction associated with lethal dilated 
cardiomyopathy , attributed to defects in mitochondrial fusion

90,91

Mfn1−/−Mfn2−/−Dnm1l−/− • Cardiomyocytes
• In adults

Cardiac hypertrophy associated with accumulation of mitochondria 
and severely distorted sarcomeric architecture

91

Mfn2−/− • Cardiomyocytes
• Nonregulated

Progressive cardiomyopathy leading to premature death, associated 
with impaired cardiac contractility and insensitivity to β-​adrenergic 
stimulation

94,95

MFN2-AA • Cardiomyocytes
• At birth

Perinatal cardiomyopathy leading to premature death owing to a failure 
in the switch from fetal to adult mitochondria in cardiomyocytes

97

miR-212–132 cluster 
overexpression

• Cardiomyocytes
• Nonregulated

Cardiac hypertrophy leading to heart failure and premature death 296

Park2−/− • Cardiomyocytes
• At birth

Perinatal cardiomyopathy leading to premature death owing to a failure 
in the switch from fetal to adult mitochondria in cardiomyocytes

97

• Cardiomyocytes
• In adults

No obvious phenotype 117

Pink1−/− • Whole body
• Nonregulated

Left ventricular dysfunction and cardiac hypertrophy at 2 months of age 116

Sirt1−/− • Whole body
• Nonregulated

Developmental heart defect and perinatal lethality 59

Sirt1 overexpression • Cardiomyocytes
• Nonregulated

Attenuated age-​associated cardiac hypertrophy (with moderate  
Sirt1 overexpression) or spontaneous cardiomyopathy (with robust Sirt1 
overexpression)

62

Sirt5−/− • Whole body
• Nonregulated

Spontaneous hypertrophic cardiomyopathy linked to increased protein 
succinylation and altered β-​oxidation

66

Sirt6−/− • Cardiomyocytes
• In adults

Spontaneous cardiac hypertrophy and heart failure 67

Sirt7−/− • Whole body
• Nonregulated

Hypertrophy and inflammatory cardiomyopathy characterized by 
extensive fibrosis and associated with premature death

68

Slc8b1−/− • Cardiomyocytes
• In adults

Heart failure associated with left ventricular remodelling 177

Tfrc−/− • Cardiomyocytes
• Nonregulated

Cardiac hypertrophy and premature death, accompanied by defects 
in mitochondrial respiration and ineffective mitophagy

124

Trp53−/− • Whole body
• Nonregulated

Decelerated cardiac ageing associated with improved mitophagic 
responses

125

Txnrd2−/− • Cardiomyocytes
• Nonregulated

Fatal dilated cardiomyopathy 204

• Cardiomyocytes
• In adults

Accelerated cardiac ageing linked with dysregulated autophagy 205

Yme1l−/− • Cardiomyocytes
• Nonregulated

Spontaneous cardiomyopathy associated with mitochondrial 
hyperfragmentation

88

DNM1L , dynamin-1-like protein; MFN2, mitofusin 2; PARK2, parkin RBR E3 ubiquitin protein ligase.
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overexpression of Sirt4 reportedly mediates detrimental 
effects in this model69. However, these findings have not 
yet been confirmed. At least in part, the cardioprotective 
effects of sirtuin activation originate from an antioxidant 
transcriptional programme orchestrated by forkhead 
box protein O3A (FOXO3A; also known as FOXO3)63, 
proficient autophagic responses70, and potentially  
the inhibition of MPT-​driven regulated necrosis64,71  
(see below). Thus, sirtuins support cardiac fitness by 
affecting mitochondrial functions.

Sirtuins are activated by caloric restriction, which is 
also a potent inducer of autophagy, and a vast amount 
of literature is available on the multipronged beneficial 
effects of caloric restriction on cardiovascular health in 
humans, at least part of which are thought to depend 
mechanistically on sirtuins72. Additional sirtuin activa­
tors include the rather nonspecific natural polyphenols 
butein, honokiol, piceatannol, quercetin, and resver­
atrol73,74 as well as several synthetic sirtuin-​activating 
compounds, including SRT1720, SRT2104, and SRT3025 
(ref.57). All these molecules have been shown to medi­
ate beneficial effects in rodent models of CVD, and 
both SRT1720 and SRT2104 extend mouse lifespan74–77. 
Similarly, dietary supplementation with nicotinamide 
mononucleotide (NMN; a precursor of NAD+) medi­
ates potent cardioprotective effects in mouse models 
of cardiomyopathy and ischaemia–reperfusion injury 
via a SIRT1-dependent or SIRT3-dependent mecha­
nism78–80. The capacity of dietary resveratrol to limit the 
incidence or severity of various cardiovascular disorders 
(mostly in the context of type 2 diabetes mellitus) has 
been investigated in multiple clinical trials81–83, with 
inconclusive findings (often due to problematic study 
design). Still, no fewer than 20 non-​closed (status: not 
terminated, suspended, or withdrawn) clinical trials are 
currently registered at clinicaltrials.gov to investigate 
dietary supplementation with resveratrol in individuals 
with age-​associated morbidities (mostly type 2 diabetes) 
and cardiovascular conditions including non-​ischaemic 
cardiomyopathy (NCT01914081), hypertension 
(NCT01842399), atherosclerosis (NCT02998918), and 
endothelial dysfunction (NCT02256540). Results from a 
small randomized clinical trial including 40 patients with 
psoriasis (NCT01154101) suggest that SRT2104 is well 
tolerated84. The safety of SRT3025 has been investigated 
in healthy volunteers (NCT01340911), but to the best of 
our knowledge the results of this study have not been 
disseminated. Finally, the effects of dietary NMN sup­
plementation on cardiometabolic functions are currently 
being formally investigated (NCT03151239). Taken 
together, these observations suggest that, although mul­
tiple dietary interventions that activate sirtuins, including  
caloric restriction, resveratrol, and NMN (both of which are  
available over the counter), might mediate robust cardio­
protective effects, additional clinical testing is required 
for the establishment of official treatment protocols  
enabling the use of these agents for the treatment of CVD.

Mitochondrial dynamics. The mitochondrial network 
constantly undergoes remodelling owing to the mutually 
antagonistic activity of multiple proteins that promote 
fission, such as mitochondrial fission factor (MFF), 

mitochondrial fission 1 protein (FIS1), and dynamin-1-
like protein (DNM1L), and fusion, such as mitofusin 1 
(MFN1), MFN2, and optic atrophy protein 1 (OPA1)85 
(Fig. 2). This process is paramount for the preservation 
of optimal mitochondrial functions in both physiologi­
cal and pathological conditions, at least in part because 
fission enables the mitophagic disposal of dysfunctional 
mitochondria86. Accordingly, multiple genetic defects 
impairing mitochondrial dynamics have been linked to 
CVD in experimental models.

The myocardium of Opa1+/− mice has clustered mito­
chondria with disorganized cristae and reduced mitochon­
drial DNA (mtDNA) content, and Opa1+/− mice are more 
susceptible to cardiac hypertrophy induced by transverse 
aortic constriction than their wild-​type counterparts87. 
Cardiomyocyte-​specific deletion of Yme1l1 accelerates 
cardiac OPA1 proteolysis, thereby favouring mitochon­
drial hyperfragmentation and metabolic impairment, 
leading to HF88. Interestingly, angiotensin-​II-induced 
cardiomyopathy leads to OPA1 acetylation and conse­
quent mitochondrial fragmentation, a detrimental pro­
cess that is inhibited by SIRT3 (ref.89). The co-​deletion 
of Mfn1 and Mfn2 from adult cardiomyocytes imposes 
a robust defect in mitochondrial fusion that drives car­
diac dysfunction associated with rapidly progressive 
(and ultimately lethal) dilated cardiomyopathy90. Such 
a detrimental phenotype cannot be fully rescued by the 
concomitant deletion of Dnm1l, but the cardiomyo­
pathy manifesting in Mfn1−/−Mfn2−/−Dnm1l−/− hearts 
progresses with different kinetics than in Mfn1−/−Mfn2−/− 
hearts and mostly reflects a mitophagic blockage91. 
However, Mfn1−/−Mfn2−/− hearts have reduced sensitivity  
to ischaemia–reperfusion injury compared with their 
wild-​type counterparts, potentially as a consequence of 
mitigated Ca2+ overload92 (see below).

Transgenic expression of DNM1L-​C452F (a hyper­
active DNM1L variant) also drives dilated cardiomyo­
pathy accompanied by a considerable mitophagic 
defect93. Similarly, mouse Mfn2−/− hearts spontane­
ously develop dilated cardiomyopathy accompanied 
by mitochondrial hyperfragmentation, impaired con­
tractile performance, and insensitivity to β-​adrenergic 
stimulation94,95. Further corroborating the importance 
of mitochondrial fusion for the preservation of cardio­
vascular homeostasis, adenovirus-​mediated delivery of  
Mfn2 to the mouse myocardium inhibits angiotensin-​II- 
induced cardiomyopathy96. Interestingly, transgene-​
driven overexpression of a non-​phosphorylatable 
MFN2 variant (MFN2-AA) in the myocardium of 
newborn (but not adult) mice prevents normal mito­
chondrial maturation, accompanied by a switch from 
glucose-​driven to fatty acid-​driven metabolism, and 
leads to premature lethality, most probably as a conse­
quence of impaired mitophagy97 (see below). Of note, 
physiological DNM1L-​dependent mitochondrial frag­
mentation is critical for cardiac adaptation to increased 
energy demands98. Moreover, conditional deletion of 
one copy of Dnm1l from the myocardium exacerbates 
pressure-​overload-induced cardiomyopathy as well as 
ischaemia–reperfusion injury in mice as a consequence 
of mitophagy impairment99,100. Altogether, these obser­
vations suggest that a balanced interplay between fission 
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Table 2 | genetic studies implicating mitochondrial functions in cardiovascular pathology in mice

Model Specificity Phenotype versus wild-​type or control mice refs

Atherosclerosis

 Atg5−/− • Monocytes
• Nonregulated

Accelerated atherosclerosis in mice fed a HFD and in Ldlr−/− mice 127,128

 Il1r1−/− • Whole body
• Nonregulated

Reduced aortic atherosclerotic plaque areas in Apoe−/− mice fed a HFD 245

 Il1rn−/− • Whole body
• Nonregulated

Synergized with the Apoe−/− genotype to cause aortic inflammation with destruction 
of the vascular architecture

246

 Il1rn overexpression • Whole body
• Nonregulated

Marked protection against atherosclerosis 246

 Parp1−/− • Whole body
• Nonregulated

Reduced aortic atherosclerotic plaque areas in Apoe−/− mice fed a HFD 265

 Sod2+/− • Whole body
• Nonregulated

Accelerated progression of atherosclerosis in Apoe−/− mice fed a HFD 202

Cardiomyopathy

 Atg5+/− • Whole body
• Nonregulated

Aggravated angiotensin-​II-induced cardiac hypertrophy 126

 Atg7 overexpression • Whole body
• Nonregulated

Decreased ventricular dysfunction and cardiac hypertrophy and improved survival 
in a model of desmin-​related cardiomyopathy

133

 Becn1+/− • Whole body
• Nonregulated

Accelerated heart failure in a model of desmin-​related cardiomyopathy 141

 Lclat1−/− • Whole body
• Nonregulated

Mitigated hypertrophic cardiomyopathy induced by thyroid hyperstimulation 
associated with improved mitophagic flux

136

 Ppif−/− • Whole body
• Nonregulated

Protection against angiotensin-​II-induced cardiac hypertrophy 261

 Sirt2−/− • Whole body
• Nonregulated

Aggravated angiotensin-​II-induced cardiac hypertrophy 65

 Sirt2 overexpression • Cardiomyocytes
• Nonregulated

Mitigated angiotensin-​II-induced cardiac hypertrophy 65

 Sirt3−/− • Whole body
• Nonregulated

Aggravated angiotensin-​II-induced cardiac hypertrophy 63

Sirt3 overexpression • Cardiomyocytes
• Nonregulated

Mitigated angiotensin-​II-induced cardiac hypertrophy 63

 Sirt4−/− • Whole body
• Nonregulated

Limited angiotensin-​II-induced cardiac hypertrophy 69

 Sirt4 overexpression • Cardiomyocytes
• In adults

Aggravated angiotensin-​II-induced cardiac hypertrophy 69

Cardiotoxicity

 Becn1+/− • Whole body
• Nonregulated

Reduced pathological cardiac remodelling after chronic doxorubicin administration 144

• Cardiomyocytes
• Nonregulated

Accelerated decline in ventricular systolic function after chronic doxorubicin 
administration

144

 Ripk3−/− • Whole body
• Nonregulated

Protected against doxorubicin-​driven heart failure, coupled with impaired CaMKII 
activation and MPT desensitization

266

 Trp53−/− • Whole body
• Nonregulated

Reduced sensitivity to doxorubicin, might be mediated by reduced mitophagic 
responses

125

Myocardial infarction

 Bcl2 overexpression • Cardiomyocytes
• Nonregulated

Reduced infarct size after I/R injury 258

 Becn1+/− • Whole body
• Nonregulated

Reduced cardiac damage at reperfusion 143

 Cgas−/− • Whole body
• Nonregulated

Improved survival after I/R injury , coupled with diminished pathological 
remodelling, enhanced angiogenesis, and preserved ventricular contractile function

240

• Whole body
• Nonregulated

Attenuated decline in cardiac function coupled with decreased production 
of inflammatory cytokines and chemokines and decreased inflammatory cell 
infiltration into the myocardium after left coronary artery ligation

242
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Model Specificity Phenotype versus wild-​type or control mice refs

Myocardial infarction (cont.)

 Dnm1l+/− • Cardiomyocytes
• Nonregulated

Exacerbated heart failure associated with defective mitophagy and mitochondrial 
dysfunction after transverse aortic constriction

99

• Cardiomyocytes
• In adults

Impaired autophagy and reduced left ventricular function after I/R injury 100

 Ifnar1−/− • Whole body
• Nonregulated

Cardioprotective phenotype resembling that caused by the Cgas−/− genotype 242

 Irf3−/− • Whole body
• Nonregulated

Cardioprotective phenotype resembling that caused by the Cgas−/− genotype 242

 Mcu−/− • Cardiomyocytes
• In adults

Protected against Ca2+ overload-​driven MPT, decreased infarct size, and preserved 
cardiac function

174,175

• Whole body
• Nonregulated

Abolished sensitivity to cyclosporine A after I/R injury , with minimal effects on 
cardiac function

173

MCU DN • Cardiomyocytes
• Nonregulated

Preserved Δψm and limited ROS generation after I/R injury , but did not mediate 
overt cardioprotection

173,176

 Mfn1−/−Mfn2−/− • Cardiomyocytes
• In adults

Reduced infarct size along with a decrease in mitochondrial Ca2+ overload and ROS 
generation

92

 miR-150−/− • Whole body
• Nonregulated

Cardioprotection associated with reduced expression of genes associated with RCD 
and inflammation

300

 Slc8b1 
overexpression

• Cardiomyocytes
• In adults

Reduced sensitivity to heart failure after I/R injury , at least partially dependent on 
reduced propensity to MPT

177

 Opa1+/− • Whole body
• Nonregulated

Increased cardiac hypertrophy after transverse aortic constriction, associated with 
altered ejection fraction

87

 Parp1−/− • Whole body
• Nonregulated

Decreased myocardial damage linked to reduced NF-​κB signalling and general 
protection against RCD

264

 Pgam5−/− • Whole body
• Nonregulated

Increased infarct size, correlating with inhibition of mitophagy and necrotic RCD 139

 Ppif−/− • Whole body
• Nonregulated

Reduced sensitivity to I/R injury , mechanistically associated with reduced 
propensity to MPT-​driven regulated necrosis

259,260

 Rheb overexpression • Cardiomyocytes
• Nonregulated

Increased infarct size, which could be reversed by systemic administration of 
rapamycin

129

 Ripk3−/− • Whole body
• Nonregulated

Protected against heart failure after I/R injury , coupled with impaired CaMKII 
activation and MPT desensitization

266

 Sirt1+/− • Whole body
• Nonregulated

Impaired IPC associated with hyperacetylation of cytoplasmic proteins and 
consequent autophagy inhibition

60,62

 Sirt1 overexpression • Whole body
• Nonregulated

Cardioprotection associated with deacetylation of cytoplasmic proteins and 
consequent autophagy activation

60,62

 Sirt3−/− • Whole body
• Nonregulated

Aggravated cardiac hypertrophy induced by transverse aortic constriction, 
potentially linked to MPT sensitization

64

 Sirt6 overexpression • Cardiomyocytes
• Nonregulated

Inhibited cardiac hypertrophy induced by transverse aortic constriction, potentially 
linked to MPT desensitization

67

 Stk4−/− • Whole body
• Nonregulated

Cardioprotection coupled to increased autophagic responses in the heart 135

Pressure overload

 Atg5−/− • Cardiomyocytes
• Nonregulated

Increased sensitivity to pressure overload 120

 Becn1+/− • Whole body
• Nonregulated

Reduced pathological cardiac remodelling 142

 Becn1 
overexpression

• Whole body
• Nonregulated

Aggravated pathological cardiac remodelling 142

 Bnip3l−/−Bnip3−/− • Cardiomyocytes (Bnip3l−/−)  
and whole body (Bnip3−/−)

• Nonregulated

Rapid functional cardiac decompensation 119

 Camk2a−/− • Cardiomyocytes
• Nonregulated

Reduced ROS generation coupled with RCD inhibition and preserved systolic 
function

182

 Dnase2a−/− • Cardiomyocytes
• Nonregulated

Severe myocarditis and dilated cardiomyopathy associated with premature death 131

Δψm, mitochondrial transmembrane potential; CaMKII, calcium/calmodulin-​dependent protein kinase II; DN, dominant-​negative; HFD, high-​fat diet; IPC, 
ischaemic preconditioning; I/R , ischaemia–reperfusion; MCU, calcium uniporter protein, mitochondrial; MPT, mitochondrial permeability transition; NF-​κB, 
nuclear factor-​κB; RCD, regulated cell death; ROS, reactive oxygen species; SIRT3, sirtuin 3.

Table 2 (cont.) | genetic studies implicating mitochondrial functions in cardiovascular pathology in mice
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and fusion is paramount for cardiovascular health as 
it preserves mitochondrial fitness in both physiologi­
cal and pathological conditions. Further corroborat­
ing this notion, the levels of various factors involved 
in the regulation of mitochondrial dynamics, includ­
ing FIS1, MFN2, and OPA1, are altered in the course 
of CVD101–103. Of note, MFN2 is also aetiologically 
involved in the proliferative arrest and death of vascu­
lar smooth muscle cells elicited by oxidative stress in 
rats104. In line with this notion, transgene-​driven Mfn2 
overexpression reportedly prevents vascular smooth 
muscle cell proliferation and restenosis in rat models of 

arterial injury induced by balloon denudation of the left 
common carotid artery105. However, these effects seem 
to be independent of the role of MFN2 in the regulation 
of mitochondrial dynamics104.

The chemical DNM1L inhibitor mdivi-1 mediates 
cardioprotective effects in rodent models of cardiac 
ischaemia–reperfusion injury106–108 and cardiomyo­
pathy109,110, but the specificity of mdivi-1 has been 
questioned111. Nonetheless, similar observations have 
been made with other DNM1L inhibitors such as P110 
(refs112,113) and dynasore114. A cell-​permeant peptide ena­
bling MFN2-dependent mitochondrial fusion has also 
been developed115, but its biological activity in the cardio­
vascular system remains to be investigated. To the best 
of our knowledge, none of these agents has been tested 
in clinical settings thus far.

Mitophagy. Mitophagy constitutes a pillar in the mainten­
ance of mitochondrial homeostasis in both the healthy  
and diseased cardiovascular system5,6. Accordingly, mul­
tiple defects in the molecular apparatus underlying pro­
ficient mitophagic responses have been associated with 
spontaneous CVD in experimental models17. Pink1−/− 
mice (lacking a kinase involved in the recognition of 
depolarized mitochondria) develop left ventricular 
dysfunction and cardiac hypertrophy by 2 months of 
age116. Deletion of Park2 (also known as Prkn; encod­
ing parkin RBR E3 ubiquitin protein ligase, a functional 
mitochondrial interactor of serine/threonine protein 
kinase PINK1, which is required for multiple variants of 
mitophagy) from the myocardium of adult mice causes 
a very mild cardiac phenotype in unstressed animals117. 
Conversely, Park2 ablation from the myocardium of  
neonate mice causes premature and rapidly lethal cardio­
myopathy associated with failed mitochondria matur­
ation (strikingly similar to the phenotype associated  
with MFN2-AA expression)97. Similarly, knockout 
of park (the fly orthologue of Park2) in Drosophila 
melanogaster causes dilated cardiomyopathy that can 
be rescued by cardiomyocyte-​specific re-​expression of 
park95,118. Bnip3l−/− mice lack a core component of the 
molecular apparatus for mitophagy and spontaneously 
develop cardiomegaly and contractile depression by 
60 weeks of age, a pathological phenotype that is fur­
ther accelerated by the concomitant deletion of Bnip3  
(coding for yet another protein involved in mitophagy)119. 
Genetic defects affecting autophagy also compromise 
cardiovascular homeostasis owing to the accumulation 
of dysfunctional mitochondria. This observation holds 
true for: cardiomyocyte-​specific deletion of Atg5 in adult 
mice, which causes lethal cardiac hypertrophy accom­
panied by disorganized sarcomere structure as well as 
mitochondrial misalignment and aggregation120,121; 
whole-​body deletion of Fbxo32 in mice, which is asso­
ciated with premature death owing to cardiac degener­
ation associated with deficient autophagic responses122;  
and the Lamp2−/− genotype, which causes a major lyso­
somal dysfunction that, in mice, drives a vacuolar myo­
pathy that affects cardiac and skeletal muscles, resembling 
Danon disease123. Of note, multiple genetic and phar­
macological interventions that impair mitochondrial 
dynamics impose at least some degree of mitophagic 

Box 1 | Principles of oxidative phosphorylation

Oxidative phosphorylation is a core bioenergetic process whereby reducing 
equivalents present in the mitochondrial matrix are sequentially used by four 
multiprotein complexes (generally referred to as respiratory complexes I–IV) and two 
electron shuttles (namely, coenzyme Q (CoQ) and cytochrome c (Cyt c)) to generate an 
electrochemical H+ gradient across the inner mitochondrial membrane that is 
harnessed in a controlled manner by the F1Fo ATP synthase (also known as respiratory 
complex V) to catalyse the phosphorylation of ADP into ATP. The main substrates for 
oxidative phosphorylation are NADH, which provides electrons to complex I (also 
known as NADH dehydrogenase), and succinate, which provides electrons to complex II 
(also known as succinate dehydrogenase) via FADH2. Accordingly, FADH2 can also fuel 
oxidative phosphorylation at the level of complex II. Both complex I and II deliver 
electrons to complex III (also known as CoQ:Cyt c oxidoreductase) via CoQ. However, 
only complex I transfers electrons onto complex III while also extruding H+ ions from 
the mitochondrial matrix to the intermembrane space. Complex III transfers electrons 
to complex IV (also known as Cyt c oxidase) via Cyt c, culminating with the reduction of 
O2 into H2O. This last step is the reason why O2 is critical for oxidative phosphorylation. 
Both complex III and complex IV directly contribute to the generation of the 
mitochondrial transmembrane potential (Δψm). Finally, the F1Fo ATP synthase uses a 
well-​described rotatory mechanism to dissipate the Δψm in a controlled manner, 
coupled with phosphorylation of ADP into ATP. This reaction requires ADP and 
inorganic phosphate (Pi), which are provided by the permeability transition pore 
components adenine nucleotide translocator (ANT) and phosphate carrier (PHC; also 
known as SLC25A3), respectively (see the figure; please note that stoichiometry is not 
respected for the sake of simplification). Importantly, the reaction catalysed by the F1Fo 
ATP synthase is reversible. This reversibility implies that in ischaemic conditions the 
capacity of oxidative phosphorylation to drive ATP synthesis is impaired, owing to 
limited oxygen availability, and that high amounts of ATP are consumed by the F1Fo ATP 
synthase to preserve the Δψm. All metabolic intermediates entering the tricarboxylic 
acid (TCA) cycle, including (but not limited to) glucose-​derived pyruvate and branched-​
chain amino acid-​derived and fatty acid-​derived acetyl-​CoA and succinyl-​CoA, 
can drive the synthesis of NADH and succinate in the mitochondrial matrix, thereby 
supporting oxidative phosphorylation. Fatty acid oxidation also supports oxidative 
phosphorylation via FADH2 synthesis. Of note, the cellular efficiency of oxidative 
phosphorylation depends on a variety of parameters, including the number of 
mitochondria per cell and their fragmentation state, the amount of respiratory 
complexes per mitochondrion, the supramolecular organization of respiratory 
complexes, substrate and O2 availability, the expression of endogenous inhibitors, 
and local redox and pH conditions339,340.
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incompetence86. These two processes are so intimately  
interconnected that mechanistically ascribing the pheno­
type to either of the alterations is difficult. Additional  
genetic alterations that trigger CVD in rodents, such 
as cardiac deletion of Tfrc (coding for the transferrin 
receptor)124, are associated with mitophagic defects. 
Moreover, genetic defects that improve mitophagic 
proficiency, such as whole-​body absence of Trp53 (also  
known as Tp53; coding for a master regulator of cellu­
lar biology that inhibits autophagy in physiological  
settings), decelerate spontaneous cardiac ageing125. 
Taken together, these observations exemplify the critical 
role of mitophagy in the preservation of physiological 
cardiovascular homeostasis. That said, Park2 deletion 
seems to rescue, at least in part, the lethal phenotype of 
Dnm1l deletion in the adult myocardium117, suggesting 
a role for uncontrolled mitophagy in the detrimental 
phenotype imposed by defects in mitochondrial fission 
(see above).

Multiple genetic defects impairing mitophagic profi­
ciency aggravate disease severity in experimental models 
of CVD17. Bnip3l−/−Bnip3−/− hearts are highly sensitive 
to decompensation induced by pressure overload119. 
Homozygous or heterozygous deletion of Atg5 from the 
mouse myocardium exacerbates cardiomyopathy driven 
by pressure overload120 and angiotensin II administra­
tion126. Similarly, mice bearing Atg5−/− monocytes are 
more susceptible to develop atherosclerotic lesions in 
response to a high-​fat diet or Ldlr deletion than mice 
with wild-​type monocytes127,128. Mice engineered to 
overexpress Rheb, which encodes the endogenous 
autophagy inhibitor RAS homologue enriched in brain 
(RHEB), in the myocardium are more susceptible to car­
diac ischaemia–reperfusion injury than wild-​type mice, 
a detrimental phenotype that can be partially rescued by 
administration of the pharmacological autophagy acti­
vator rapamycin129,130. Dnase2a−/− mice, which lack a lyso­
somal nuclease (deoxyribonuclease 2α) that is involved 

Transferrin
Iron-​binding plasma 
glycoprotein that controls the 
level of free iron ions in 
biological fluids.
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Fig. 2 | overview of mitochondrial dynamics. The mitochondrial network is constantly reshaped by the antagonistic 
activity of proteins that mediate fission, such as mitochondrial fission factor (MFF), mitochondrial fission 1 protein (FIS1), 
and dynamin 1-like protein (DNM1L), and proteins that promote fusion, such as mitofusin 1 (MFN1), MFN2, and optic 
atrophy protein 1 (OPA1). One of the essential roles of fission is to segregate dysfunctional mitochondria, thereby enabling 
their uptake by the autophagic machinery and consequent degradation in lysosomes. PARK2, parkin RBR E3 ubiquitin 
protein ligase; PINK1, PTEN-​induced putative kinase protein 1.
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in the autophagic degradation of mtDNA released 
upon mitochondrial damage, are extremely sensitive to 
pressure-​overload-induced cardiomyopathy, at least in 
part owing to exaggerated inflammatory responses in the  
myocardium131 (see below). Interestingly, cathelicidin 
antimicrobial peptide (CAMP) can bind mtDNA to 
limit its degradation by DNase 2α (DNASE2α), which 
has been associated with exacerbated atherosclerosis in 
Apoe−/− mice132.

Whole-​body overexpression of Atg7 (encod­
ing a core component of the autophagic machinery) 
restrains cardiac hypertrophy and extends survival in 
a mouse model of desmin-​related cardiomyopathy133.  
The Trp53−/− genotype limits both ischaemia–reperfusion 
injury and doxorubicin cardiotoxicity in mice, potentially 
owing to reduced myocardial susceptibility to RCD (see 
RCD section below), and improved mitophagy125,134. 
Multiple other genetic alterations that mediate beneficial 
effects in experimental models of CVD are associated with 
superior mitophagic responses (although precise mech­
anistic links are missing), including the Stk4−/− genotype, 
which limits cardiac ischaemia–reperfusion injury135, 
and the whole-​body deletion of Lclat1, which mitigates 
hypertrophic cardiomyopathy induced by thyroid hyper­
stimulation136. Moreover, multiple cardioprotective inter­
ventions including hypothermia and the administration 
of glucagon-​like peptide 1 receptor (GLP1R) agonists have 
been shown to promote autophagy (at least in some cell 
types), correlating with reduced amounts of RCD137,138. 
Conversely, Pgam5−/− mice are more susceptible to car­
diac ischaemia–reperfusion injury than their wild-​type 
littermates along with a whole-​body defect in mitophagy, 
potentially linked to the capacity of phosphoglycerate 
mutase family member 5 (PGAM5) to regulate DNM1L-​
dependent fission139. Similarly, mice with an endothelial 
cell-​specific deletion of Pdcd10 spontaneously develop a 
syndrome resembling cerebral cavernous malformations, 
accompanied by robust autophagic defects140. Thus, the 
optimal elimination of damaged mitochondria by mito­
phagy is fundamental for the cardiovascular system to 
control potentially pathogenic challenges.

Interestingly, the role of beclin 1 (BECN1), a core 
component of the autophagic machinery that par­
ticipates in multiple instances of mitophagy7, in the 
preservation of cardiovascular homeostasis in patho­
logical settings is rather controversial. Indeed, whereas 
BECN1 has been attributed a cardioprotective role in 
some models of CVD99,141, Becn1+/− rodents consist­
ently exhibited low sensitivity to potentially cardiotoxic 
challenges142–144. Although the reasons for this apparent 
discrepancy remain to be formally elucidated, linking 
them to emerging autophagy-​independent functions 
of BECN1 in RCD regulation is tempting145. Further 
corroborating the critical role of mitophagy in cardio­
vascular homeostasis, ischaemic preconditioning has 
been associated with the translocation of PARK2 to 
depolarized mitochondria and consequent initiation of 
their autophagic disposal146. Moreover, the expression 
levels of components of the mitophagic apparatus such 
as PINK1 decrease in patients with CVD116, and HF is 
more frequent in individuals with mitophagy defects  
(as in patients with Parkinson disease)147.

Sirtuin activators such as caloric restriction and 
resveratrol are potent activators of autophagy, adding to 
multiple lines of evidence intimately linking the sirtuin 
system and autophagic responses. Additional pharma­
cological agents that promote mitophagy or autophagy 
have been shown to mediate beneficial effects in 
rodent models of CVD17. These include the natural 
polyamine spermidine, an inhibitor of the acetyltrans­
ferase E1A-associated protein p300 (EP300)148–150, and  
the natural macrolide rapamycin (also known as siroli­
mus), which inhibits the master suppressor of auto­
phagy mechanistic target of rapamycin (mTOR)151–154. 
Conversely, systemic administration of nonspecific 
inhibitors of autophagy such as 3-methyladenine, 
which targets multiple variants of phosphatidylinositol 
3-kinase (PI3K), and bafilomycin A1, which suppresses  
lysosomal functions, generally increases disease sever­
ity in rodent models of CVD, including ischaemia– 
reperfusion injury153,155,156. Interestingly, sirolimus is 
largely employed in drug-​eluting stents to prevent 
restenosis after percutaneous coronary intervention157. 
Although this use originated from the potent antipro­
liferative and anti-​inflammatory activity of sirolimus158, 
it cannot be excluded that the therapeutic benefits of 
this strategy involve, at least in part, the induction  
of autophagy, which reportedly stimulates the degra­
dation of oxidized LDL159 and might also favour the 
clearance of macrophages from the atherosclerotic 
plaque160,161. Moreover, multiple FDA-​approved agents 
that mediate beneficial effects on the cardiovascular 
system, including aspirin (which is widely used as an 
anti-​inflammatory and anticoagulant)162, statins (which 
are currently used to lower circulating levels of choles­
terol and triglycerides)163, and suberanilohydroxamic 
acid (SAHA; a histone deacetylase inhibitor used for the 
treatment of cutaneous T cell lymphoma)164,165, trigger  
proficient autophagic responses in the myocardium.

Despite the robust links between mitophagy and/or  
autophagy activation and improved cardiovascular 
homeostasis in health and disease, targeting the under­
lying molecular apparatus with specific pharmaco­
logical intervention has proved to be challenging130. 
Accordingly, no clinical trials are currently investigating 
the therapeutic potential of mitophagy and/or autophagy 
modulators beyond calorie restriction and sirolimus in 
patients with CVD.

Ca2+ homeostasis. In cardiomyocytes, mitochondria 
participate (to some extent) in the buffering of cytosolic 
Ca2+ ions. Depolarization of the plasma membrane acti­
vates voltage-​dependent L-​type Ca2+ channels, and Ca2+  
enters into the cytosol, which causes Ca2+-induced  
Ca2+ release from the sarcoplasmic reticulum via ryano­
dine receptor 2 (RYR2); Ca2+ is removed from the 
cytosol predominantly by members of the sarcoplas­
mic/endoplasmic reticulum calcium ATPase (SERCA) 
family and by solute carrier family 8 member A1 
(SLC8A1; also known as NCX1)166. In physiological 
conditions, mitochondrial Ca2+ uptake is mediated by 
calcium uniporter protein, mitochondrial (MCU)167,168. 
Conversely, Ca2+ efflux from the mitochondrial matrix 
relies primarily on the Na+/Ca2+ antiporter SLC8B1 
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(also known as NCLX)169. Although mild, transient 
elevations of mitochondrial Ca2+ levels support oxida­
tive phosphorylation and ATP synthesis170, persistent 
Ca2+ overload favours MPT171. In line with this notion, 
the transgene-​driven overexpression of a leaky variant 
of RYR2 in the mouse myocardium exacerbates the 
cardiotoxic effects of ischaemia–reperfusion injury  
and causes mitochondrial Ca2+ overload in cardiomyo­
cytes172. Moreover, in multiple cell types, including 
cardiomyocytes, MCU deficiency confers resistance 
to MPT driven by mitochondrial Ca2+ overload173,174, 
and the conditional deletion of Mcu from adult cardio­
myocytes mediates cardioprotective effects against 
ischaemia–reperfusion injury in vivo174,175. However, 
the hearts from Mcu−/− mice, as well as mouse hearts 
expressing a dominant-​negative variant of MCU, are  
as susceptible to ischaemia–reperfusion injury ex vivo 
as their wild-​type counterparts173,176. The reasons under­
lying this apparent discrepancy remain to be elucidated.  
As a possibility, the contribution of mitochondrial Ca2+ 
overload to MPT might be limited when ischaemia–
reperfusion injury is imposed ex vivo. Irrespective of 
this conundrum, MCU seems to be required for opti­
mal cardiac responses to acute physical demands174,175. 
Importantly, deletion of Slc8b1 from adult mouse cardio­
myocytes provokes sudden death as a consequence of 
mitochondrial Ca2+ overload leading to widespread 
MPT-​driven necrosis of the myocardium177. Conversely, 
Slc8b1 overexpression mediates robust cardioprotec­
tion in mouse models of cardiac ischaemia–reperfusion 
injury177. These observations exemplify the impor­
tance of mitochondrial Ca2+ fluxes for cardiovascular  
homeostasis in health and disease.

Further corroborating the crucial role for intracel­
lular Ca2+ homeostasis in cardiac physiology, genetic 
defects in plasma membrane L-​type Ca2+ channels are 
known to impair cardiac signal conduction, potentially 
favouring the development of arrhythmia178. Moreover, 
hyperactivation of the cytosolic Ca2+-responsive enzyme 
calcium/calmodulin-​dependent protein kinase II 
(CaMKII) has been aetiologically linked to a variety of  
cardiovascular disorders, often reflecting the ability 
of CaMKII to regulate mitochondrial functions. Mice 
engineered to overexpress an endogenous inhibitor of  
CaMKII in cardiomyocytes are protected from ischaemia– 
reperfusion injury in vivo179, presumably reflecting the 
capacity of CaMKII to trigger MCU-​dependent mito­
chondrial Ca2+ overload, blunt antioxidant defences, 
and trigger DNM1L-​dependent mitochondrial frag­
mentation179–182. Deletion of Camk2d (encoding one 
of the CaMKII subunits) attenuates pathological 
maladaptation in a genetic mouse model of decom­
pensating cardiac hypertrophy182. Moreover, CaMKII 
seems to participate in the pathogenesis of athero­
sclerotic plaques183, although the underlying molecular  
mechanisms remain to be unveiled.

Although pharmacological regulators of cellular Ca2+ 
homeostasis are commonly available for the treatment of 
some cardiovascular disorders (for example, verapamil,  
a blocker of plasma membrane Ca2+ channels used virtu­
ally worldwide for the treatment of arrhythmia and some 
forms of hypertension)184, mitochondrial Ca2+ fluxes have 

been rather elusive drug targets. NCLX inhibitors such as 
CGP-37157, KB-​R7943, and SEA0400 mediate promis­
ing cardioprotective effects in animal models of HF169,185. 
These results are at odds with the findings obtained with 
Nclx−/− mice177, most likely reflecting the capacity of 
chemical NCLX inhibitors such as CGP-37157 to pre­
serve redox homeostasis169. That said, NCLX inhibitors 
never entered clinical development, presumably owing to 
specificity issues, because these compounds also inhibit 
the plasma membrane Na+/Ca2+ antiporter SLC8A1186. 
Chemical inhibitors of MCU including DS16570511 
have also been identified187, but whether MCU inhibition 
constitutes a valid therapeutic objective for the treatment 
of CVD remains controversial. Supporting caution over 
this approach, the anticancer agent mitoxantrone, which 
is associated with robust cardiotoxic effects in some 
patients, potently inhibits MCU (potentially contribut­
ing the adverse effects of this chemotherapeutic)188. The 
necroptosis inhibitor Necrox-5 has also been suggested 
to mediate beneficial effects via MCU inhibition189, but 
the specificity of this molecule remains to be deter­
mined. Finally, a panel of CaMKII inhibitors is available 
for investigational purposes, including competitive and 
noncompetitive inhibitors of ATP or substrate binding, 
agents that disrupt calmodulin binding, and agents that 
mimic endogenous CaMKII blockers190. Although many 
of these agents mediate consistent beneficial effects in 
animal models of CVD (reviewed previously)190, none 
of them has entered clinical development.

Oxidative stress. Mitochondria generate reactive oxy­
gen species (ROS) as a normal by-​product of oxidative 
phosphorylation, and physiological ROS levels regulate 
multiple cardiovascular processes, including (but not 
limited to) metabolic functions in the myocardium 
and endothelial permeability in vessels191. However, 
mitochondrial dysfunction is generally associated 
with massive ROS overgeneration (Box 2), which (espe­
cially when cellular antioxidant defences are lowered) 
causes oxidative damage to macromolecules, thereby 
favouring the establishment of local inflammation2 
and initiating multiple variants of RCD including 
MPT-​driven regulated necrosis and ferroptosis171,192. 
The human failing myocardium reportedly has more  
than twofold higher levels of superoxide anion than the 
healthy myocardium193. Similar observations have been 
made in the context of diabetic and hypertensive cardio­
myopathy194,195. Moreover, markers of oxidative damage 
to lipids196, nucleic acids197, and proteins198 have been  
documented in the circulation or in the myocar­
dial tissue of patients with MI or HF (and in animal  
models of these conditions)199. Finally, myocardial 
mitochondria exhibit increased oxidative damage in 
aged versus young rats200, and the mitochondrial net­
work of rat endothelial cells produces increased levels 
of H2O2 with ageing201. These observations suggest that 
oxidative stress is involved in multiple forms of CVD, 
including ageing-​associated cardiovascular disorders. 
Corroborating an aetiological role for ROS overpro­
duction in at least some variants of CVD, the absence 
of one copy of Sod2 (which encodes a mitochondrial 
superoxide dismutase) aggravates atherosclerosis 
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Box 2 | Mitochondrial generation of reactive oxygen species

In physiological conditions, an estimated 0.2–2.0% of molecular O2 taken up by 
mitochondria is not used as a terminal electron acceptor in the respiratory chain 
(see Box 1) but forms superoxide anion (O2

•−) at the level of complex I or complex III 	
(a process known as electron leak). O2

•− can be rapidly metabolized by mitochondrial 
and mostly extramitochondrial variants of superoxide dismutase (SOD2 and SOD1, 
respectively), which catalyse the formation of hydrogen peroxide (H2O2) and O2. In turn, 
H2O2 can have different fates: it can be metabolized by catalase (CAT), resulting in H2O 
formation; it can be metabolized by multiple peroxidases (including glutathione 
peroxidase (GPx)), coupling the reduction of H2O2 to H2O with the oxidation of a 
nucleophilic species, such as reduced glutathione (GSH); and it can be converted into 
the hydroxyl radical (OH•) and hydroxyl anion (OH–) in the presence of Fe2+ or Cu1+ 
(Fenton reaction) (see figure; please note that stoichiometry is not respected for the 
sake of simplification). Physiological levels of reactive oxygen species (ROS) are 
involved in the regulation of several biological processes, including intracellular 
signalling, adaptation to hypoxia, autophagy, and both adaptive and innate 
immunity341. However, ROS levels that exceed endogenous antioxidant capacities 
cause extensive macromolecular damage to DNA, proteins, and lipids, generally 
leading to cellular senescence (the permanent proliferative inactivation of a cell 
damaged beyond repair) or regulated cell death.
In the hypoxic myocardium, electrons cannot flow normally through the respiratory 

chain because O2 availability is limited. This impairment favours the acquisition of a 
reduced state by respiratory complexes, which enables electron leak, O2

•− synthesis, 
and oxidative damage to the respiratory chain. At tissue reperfusion, restored oxygen 
availability drives an abrupt increase in electron flow through damaged respiratory 
complexes, which is associated with a burst in O2

•− production. Reperfusion is the phase 
at which mitochondria are most sensitive to ROS-​mediated mitochondrial permeability 
transition because the low pH associated with ischaemia potently inhibits 
mitochondrial permeability transition. It has been proposed that uncoupling, the 
process whereby the transfer of electrons along the respiratory chain occurs in 	
the absence of net extrusion of H+ ions from the mitochondrial matrix, leading to 
decreased mitochondrial transmembrane potential and therefore to reduced sensitivity 
of respiratory complexes to hypoxia-​mediated reduction, might have evolved as a 
physiological barrier against oxidative damage rather than as a thermogenic process342.

GSSG, glutathione disulfide.
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progression in Apoe−/− mice202. Placing mice under 
progressive respiratory hypoxia after ischaemia–
reperfusion limits ROS production because hypoxia 
induces a robust regenerative response with decreased 
myocardial fibrosis and improvement of left ventricular 
systolic function203. Moreover, cardiomyocyte-​specific 
deletion of Txnrd2 (which encodes thioredoxin reduc­
tase 2) from mouse embryos leads to fatal dilated cardio­
myopathy204. Interestingly, imposing the same genetic 
defect on adult mice generates a much milder cardiac 
phenotype resembling accelerated cardiac ageing205. 
This finding suggests that the embryonic and neonatal 
myocardium and its adult counterpart have different 
sensitivity to oxidative stress.

The possibility to use antioxidants (including mol­
ecules available over the counter as dietary supplements)  

for the treatment of CVD drove an intense wave of 
preclinical and clinical investigation spanning the past 
2 decades. Coenzyme Q10, α-​tocopherol (vitamin E), 
ascorbic acid (vitamin C), and β-​carotene (the precur­
sor of vitamin A) have all been clinically tested for the 
treatment or prophylaxis of HF206,207, high-​risk heart 
surgery208, acute MI209–214, and atherosclerosis215,216. The 
majority of these studies confirmed that active levels 
of antioxidants can be achieved in the circulation of 
patients with CVD, although most often this is not asso­
ciated with measurable clinical benefits, perhaps with 
the exception of coenzyme Q10 supplementation for the 
treatment of moderate-​to-severe HF206. Some clinical tri­
als are ongoing to test the clinical activity of coenzyme 
Q10 or its reduced counterpart (ubiquinol) in patients 
with HF (NCT03133793, NCT01925937, NCT02779634, 
and NCT02847585), cardiac arrest (NCT02934555), and 
atherothrombosis (NCT02218476) as well as the cap­
acity of ascorbic acid to prevent atrial fibrillation after 
CABG surgery (NCT03123107).

Promising preclinical results have been obtained 
with mitochondria-​targeted antioxidants, including 
elamipretide (also known as Bendavia, MPT-131, and 
SS-31), mitoQ, and mito-​TEMPO, in animal models 
of MI217, hypertensive cardiomyopathy195,218–220, HF221, 
ischaemia–reperfusion injury222–224, pathological tissue 
remodelling after MI225, and atherosclerosis226, foster­
ing the initiation of multiple clinical trials. Both the 
EVOLVE (NCT01755858) and the EMBRACE STEMI 
(NCT01572909) studies, evaluating the capacity of 
elamipretide to limit restenosis after angioplasty of the 
renal or coronary artery, respectively, did not report 
clinical benefits227,228. Conversely, high-​dose elami­
pretide decreased left ventricular end-​diastolic vol­
ume and end-​systolic volume in HF218,221 with reduced 
ejection fraction, pointing to (at least some degree of) 
clinical efficacy229. Elamipretide is still being investi­
gated in Europe for its therapeutic effects in patients 
with HF (NCT02914665 and NCT02788747), whereas 
in the USA, increased attention is being dedicated 
to the possibility of using elamipretide for the treat­
ment of mitochondrial disorders (such as myopa­
thies and retinopathies). Along similar lines, mitoQ 
is mostly being investigated in clinical settings other  
than CVD.

Inflammation. The major role of mitochondria in the 
establishment of innate inflammatory responses that 
contribute to the pathogenesis of CVD is now clear230. 
This observation reflects the key contribution of mito­
chondrial metabolism and ROS production to multiple 
immune functions (which is beyond the scope of this 
Review)231, and the fact that mitochondria contain a 
large amount of endogenous molecules that can act as 
damage-​associated molecular patterns (DAMPs) upon 
release232,233. These molecules include (but potentially 
are not limited to) ROS, mtDNA, ATP, and cardio­
lipin233. Both ROS and mtDNA (alone or complexed 
with TFAM) can stimulate inflammatory responses 
from the cytosol, owing to their capacity to stimulate 
the release of IL-1β, IL-18, and type I interferon upon 
activation of the inflammasome and the stimulator 

Damage-​associated 
molecular patterns
(DAMPs). Endogenous 
molecules that exert potent 
immunomodulatory functions 
upon binding to cellular 
receptors that evolved to 
control microbial pathogens.

Inflammasome
Supramolecular complex 
containing caspase 1 (CASP1), 
which, among other functions, 
catalyses the proteolytic 
processing of IL-1β and IL-18, 
thereby enabling their release 
in a bioactive form.
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of interferon genes protein (STING; also known as 
TMEM173)234,235. Moreover, extracellular mtDNA can 
drive granulocyte degranulation upon binding to Toll-​
like receptor 9 (TLR9)236. Extracellular ATP released in 
the course of RCD operates both as a chemoattractant 
and as an immunostimulant for myeloid cells237. Finally, 
cardiolipin can favour the activation of γδ T lymphocytes 
via a CD1D-​dependent mechanism238. Although not all 
these processes have been implicated in the pathophys­
iology of CVD, these observations exemplify well how 
mitochondrial dysfunction in the cardiovascular system, 
especially in the presence of a mitophagic defect, can 
drive detrimental inflammatory responses.

In line with this notion, mice lacking the cytosolic 
DNA sensor cyclic GMP-​AMP synthase (CGAS)239 have 
improved early survival after MI along with reduced car­
diac immune infiltration and consequent pathological 
tissue remodelling240. Cgas−/− mice, Irf3−/− mice (lacking 
an effector of CGAS signalling), and Ifnar1−/− mice (lack­
ing one of the subunits of the type I interferon receptor)241  
are protected against MI compared with wild-​type mice, 
a cardioprotective phenotype that is accompanied by 
decreased cardiac expression of inflammatory cytokines 
and chemokines and decreased inflammatory cell infil­
tration in the myocardium242. Similar cardioprotective 
effects have been documented with hearts from Nlrp3−/− 
mice (which lack a core component of the inflamma­
some) subjected to ischaemia–reperfusion injury  
ex vivo243. Moreover, mtDNA escaping mitophagic degra­
dation as a consequence of Dnase2 deletion aggravates 
disease symptoms and progression in a mouse model 
of pressure-​overload-induced cardiomyopathy, a detri­
mental phenotype that can be partially rescued by 
Tlr9 co-deletion or administration of TLR9-inhibiting  
oligodeoxynucleotides131. NLRP3, CGAS, and STING 
have also been aetiologically involved in the endothelial 
inflammatory response driven by diet-​induced obesity 
and in some models of atherogenesis235,244. Moreover, 
atherogenesis caused by a high-​fat diet is inhibited in  
Apoe−/−Il1r1−/− mice (which lack both apolipoprotein E  
and the receptor for IL-1β, IL-1R1) compared with 
Apoe−/− mice245. By contrast, deletion of Il1rn (encoding 
an endogenous inhibitor of IL-1R1) aggravates consid­
erably the disease pathogenesis in Apoe−/− mice, whereas 
Apoe−/− mice engineered to overexpress Il1rn are largely 
protected from high-​fat-diet-​induced atherogenesis246. 
Finally, a common loss-​of-function variant in P2RX7 
(coding for one of the receptors for extracellular ATP) 
is associated with reduced risk of cardiovascular events 
in smokers247. These studies are only a few examples  
of how genetic defects in the pro-​inflammatory sig­
nalling pathways elicited by mitochondrial DAMPs 
reduce disease incidence, severity, or progression in 
rodent models of CVD as a consequence of quenched 
inflammatory responses.

In line with this notion, pharmacological inhibitors  
of the signal transduction cascades activated by mito­
chondrial DAMPs provided beneficial effects in multiple 
experimental models of CVD. For instance, administra­
tion of a type I interferon-​neutralizing antibody pro­
tected mice against MI to a similar extent as the absence 
of Irf3 or Ifnar1 (ref.242). Similarly, wild-​type mice 

subjected to ischaemia–reperfusion while receiving a 
pharmacological inhibitor of NLRP3 (16673-34-0) had 
a significant reduction in infarct size afterwards com­
pared with their control counterparts248,249. Some degree 
of cardioprotection has also been observed with the 
P2RX7 inhibitor Brilliant Blue in rat hearts subjected to  
ischaemia–reperfusion ex vivo250 as well as with the TLR9- 
targeting oligodeoxynucleotide ODN 2088 in rats with 
spontaneous hypertension251. Interestingly, elamipretide 
binds to and prevents the peroxidation of cardiolipin252, 
and blocking γδ T lymphocytes with a monoclonal anti­
body specific for killer cell lectin-​like receptor subfamily K  
member 1 (KLRK1) reportedly attenuates ischaemia–
reperfusion injury in a cardiac transplantation model 
in rats253. However, whether elamipretide influences 
the capacity of cardiolipin to activate γδ T lympho­
cytes remains to be elucidated. Although multiple anti-​
inflammatory agents are currently available for the 
treatment of CVD, they all operate by either inhibiting 
immune cell activation (as in the case of corticosteroids) 
or by blocking the production of pro-​inflammatory 
eicosanoids (as in the case of NSAIDs)254,255. To the best of 
our knowledge, no therapeutic agent designed to inter­
cept DAMP emission from mitochondria or specifically 
block the downstream signalling cascades has reached 
clinical development.

Regulated cell death. A prominent aetiological com­
ponent of multiple cardiovascular disorders, including 
HF, MI, and atherosclerosis, is the demise of cells dam­
aged beyond recovery15, generally occurring via multi­
ple, highly interconnected signalling cascades4 (Box 3). 
Widespread and irreversible mitochondrial dysfunction 
culminating with the permeabilization of mitochondrial 
membranes has a central role in apoptosis, MPT-​driven 
regulated necrosis, and parthanatos256, de facto contrib­
uting to pathological tissue loss in the context of CVD15.  
In line with this notion, mice bearing genetic alterations of 
the molecular apparatus for RCD are protected (at least 
to some degree) against multiple cardiovascular patholo­
gies. For instance, Bbc3−/− mice lack one of the upstream 
activators of intrinsic apoptosis and have increased 
resistance to ischaemia–reperfusion injury compared 
with their wild-​type littermates257. Similarly, mice 
overexpressing Bcl2, encoding the apoptosis regulator 
BCL-2, have mitigated MI upon ischaemia–reperfusion 
injury258. Ppif−/− mice, which lack the crucial component 
for MPT-​driven regulated necrosis CypD, are protected 
against cardiac ischaemia–reperfusion injury259,260, 
angiotensin-​II-induced cardiomyopathy261, and arrhyth­
mia (in this last case, perhaps also linked to preserved 
Ca2+ fluxes)262. The deletion of Parp1, which encodes 
poly(ADP-​ribose) polymerase 1 (a nuclear DNA repair 
enzyme that is required for parthanatos), mediates bene­
ficial effects in mouse models of ischaemia–reperfusion 
injury263,264 and atherogenesis265. Moreover, both Ripk3−/− 
mice (which lack a critical regulator of necroptosis) and 
mice engineered to overexpress dominant-​negative 
CaMKII in the heart are protected against ischaemia–
reperfusion injury and the cardiotoxic effects of doxo­
rubicin266. These findings link the molecular machinery 
for necroptosis, which normally proceeds independently 

γδ T lymphocytes
Small subsets of T cells 
expressing a rather invariant 
variant of the T cell receptor 
and mostly operating at the 
interface between innate and 
adaptive immunity.

Eicosanoids
Large family of arachidonic 
acid derivatives involved in the 
regulation of multiple biological 
processes, including the 
recruitment and activation of 
immune cells.

Apoptosis
Form of RCD initiated by 
extracellular or intracellular 
cues that is precipitated by the 
sequential activation of various 
members of the caspase 
protein family.

Parthanatos
Necrotic variant of RCD driven 
by PARP1 hyperactivation and 
precipitated by the consequent 
bioenergetic catastrophe 
coupled to enzymatic DNA 
degradation.
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of mitochondria256, to mitochondrial dysfunction and 
consequent MPT-​driven necrosis.

Extraordinary efforts have also been dedicated to the 
development of clinically useful inhibitors of RCD for 
cardioprotective purposes267, with rather dismal results. 
Indeed, although dozens of compounds targeting distinct 
modules of the molecular machinery for RCD have been 
successfully synthesized and demonstrated to mediate 
beneficial effects in experimental models of CVD267, 
none of these agents is currently approved for clinical 
use. Among other approaches, promising preclinical 
results in animal models of CVD have been obtained 
with caspase inhibitors, including: the pan-​caspase 
blockers Z-​VAD-FMK268 and MX1013 (ref.269); inhibi­
tors of the core activator of intrinsic apoptosis, apoptosis 
regulator BAX (BAX), including a cell-​permeant peptide 
derived from the endogenous BAX inhibitor BCL-2- 
like protein 1 (BCL-2L1)270, as well as the two small mol­
ecules Bci1 and Bci2 (although these compounds were 
tested only in rodent models of brain ischaemia)271; 

inhibitors of serine protease HTRA2, mitochon­
drial (HTRA2), such as the small molecule UCF-101 
(refs272,273); molecules that preserve the integrity of the 
respiratory chain in the course of RCD, including mul­
tiple 2-sulfonyl-​pyrimidinyl derivatives (although these 
compounds have been investigated only in rodent mod­
els of neurodegeneration)274,275; PARP1 inhibitors such 
as 3-aminobenzamide263; and inhibitors of MPT-​driven 
necrosis, including TRO40303 (a small molecule spe­
cific for translocator protein (TSPO)276), cinnamic ani­
lides (the precise molecular target of which remains to 
be determined277), and the CypD-​targeting compounds 
cyclosporine A, Debio-025, NIM811, and sanglifehrin A 
(ref.278). Most of these molecules never reached clinical 
development, often owing to specificity or bioavailability 
issues267. Conversely, both TRO40303 and cyclosporine 
A have been investigated for their clinical benefits in 
patients undergoing percutaneous coronary interven­
tion for acute MI279,280. However, despite considerable 
enthusiasm elicited by the release of efficacy data from 
the first randomized clinical trial to test cyclosporine A 
for this indication280, subsequent studies did not docu­
ment clinical benefits281,282. Similarly, TRO40303 seems 
to be well tolerated but devoid of clinical efficacy283,284. 
To the best of our knowledge, the clinical development 
of TRO40303 has been discontinued. By contrast, a large 
number of clinical trials are ongoing to test the therapeu­
tic effects of cyclosporine A. The vast majority of these 
studies, however, are aimed at investigating the activity 
of cyclosporine A as an immunosuppressant rather than 
as an MPT inhibitor. Indeed, cyclosporine A is approved 
by the FDA to prevent and treat graft-​versus-host dis­
ease after bone marrow transplantation, the rejection of 
kidney, heart, and liver transplantation, and a panel  
of autoimmune disorders285,286. Of note, the vasodilator 
nicorandil, which is approved in several countries for the 
treatment of angina, reportedly potentiates ischaemic 
preconditioning, at least in some experimental models, 
by inhibiting MPT287. Clinical data from a few studies 
indicate that nicorandil (which was not conceived as 
an MTA) might confer cardioprotection after MI288–290,  
a possibility that remains under scrutiny.

Mitochondrial microRNAs. Most (if not all) aspects of 
mitochondrial biology are now known to be subjected 
to epigenetic regulation by microRNAs (miRNAs)291. 
Importantly, this process occurs not only in the nucleus 
but also in the mitochondrial matrix, where all the 
components of the molecular apparatus for miRNA-​
dependent gene silencing are present292. Both nuclear 
miRNAs and mitochondrial miRNAs (also known as 
mitomiRs) have been implicated in the pathogenesis of 
multiple cardiovascular disorders291. The co-​deletion 
of the sequences encoding miR-181c and miR-181d 
mediated cardioprotective effects in a mouse model 
of ischaemia–reperfusion injury, potentially linked 
to preserved levels of the mitochondrially encoded 
cytochrome c oxidase subunit 1 (MT-​CO1) and 
ameliorated respiratory functions293. Overexpression 
of miR-30b in mouse cardiomyocytes decreases infarct 
size after ischaemia–reperfusion injury, reflecting the 
ability of miR-30b to downregulate CypD levels and 

microRNAs
(miRNAs). Small non-​coding 
RNA molecules that regulate 
the expression of target genes 
at the transcriptional or  
post-​transcriptional level.

Box 3 | Mechanistic notions on regulated cell death

Mammalian cells exposed to very harsh microenvironmental conditions (such as 
extreme temperatures and elevated osmotic pressures) die in a virtually 
uncontrollable manner, reflecting the physical breakdown of the plasma membrane. 
However, this unregulated cell death is fairly uncommon in the context of human 
pathophysiology. Instead, human cells generally succumb to pathological cues in the 
context of failing adaptation to stress via regulated cell death (RCD), which ensues 
the activation of a genetically encoded machinery that determines the kinetics of the 
process and its immunological correlates. Indeed, according to current models, 
mammalian cell death is not caused by the activation of specific proteolytic or 
nucleolytic pathways, as was thought until the early 2010s, but rather by a lethal 
shortage of ATP coupled to the accumulation of unrepairable oxidative damage 
to macromolecules, leading to irreversible loss of plasma membrane integrity. 
Therefore, actual cytoprotection (that is, a reduction in the percentage of cells 
succumbing to a cytotoxic cue, as opposed to a simple delay in RCD) might not be 
achievable after cells are committed to death (that is, when cellular functions are 
compromised beyond recovery)4,330.
Irrespective of this (rather debated) point and its major therapeutic implications 

(see main text), multiple molecular cascades precipitating RCD in mammals have been 
identified. These signal transduction cascades rely on a dedicated molecular machinery, 
meaning that they can be retarded (or accelerated) by specific pharmacological or 
genetic interventions, and include the following:

•	Extrinsic and intrinsic variants of apoptosis: a caspase 3-dependent pathway 
optionally involving mitochondrial outer membrane permeabilization.

•	Mitochondrial permeability transition-​driven necrosis: a cyclophilin D-​dependent 
process elicited at the inner mitochondrial membrane.

•	Necroptosis: another form of regulated necrosis culminating with plasma membrane 
permeabilization dependent on mixed lineage kinase domain-​like protein (MLKL).

•	Ferroptosis: an iron-​dependent pathway mediated by uncontrolled lipid peroxidation.

•	Parthanatos: a poly(ADP-​ribose) polymerase 1-dependent process resulting in a lethal 
bioenergetic crisis coupled to DNA degradation.

•	Pyroptosis: an inflammatory variant of RCD linked to plasma membrane 
permeabilization by gasdermin protein family members.

•	Lysosome-​dependent cell death: RCD that is initiated by lysosomal breakdown and 
precipitated by lysosomal hydrolases.

•	Autophagy-​dependent cell death: a form of RCD aetiologically linked to components 
of the molecular machinery for autophagy.

•	NETotic cell death: a reactive-​oxygen-species-​dependent form of RCD restricted 	
to haematopoietic cells and linked to neutrophil extracellular trap (NET) production.

•	Entotic cell death: referring to the lysosomal degradation of living cells internalized 
by other, nonphagocytic cells via an actomyosin-​dependent mechanism (entosis)4,330.
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thereby impair MPT294. Similarly, miR-2861 knock­
down protects the mouse heart from ischaemia– 
reperfusion injury in vivo, a beneficial phenotype 
potentially linked to upregulation of solute carrier fam­
ily 25 member 4 (SLC25A4)295. Co-​deletion of the genes 
encoding miR-212 and miR-132 provides cardioprotec­
tion against pressure-​overload-induced cardiomyo­
pathy along with the activation of FOXO3A-​dependent 
autophagy296. Consistently, cardiomyocyte-​specific 
overexpression of miR-132, miR-199a, miR-212, 
or miR-421 in rodents triggers or aggravates CVD 
along with the induction of mitophagic defects296–298. 
Nanoparticle-​based delivery of a miR-181c coding 
vector also leads to cardiac dysfunction by provoking 
mitochondrial impairment299, as does the deletion of 
mir-150 and the co-​deletion of miR-181a and miR-
181b293,300. Altogether, these observations exemplify the 
intimate links between the epigenetic regulation of gene 
expression at both mitochondrial and nuclear levels,  
mitochondrial biology, and CVD.

Several miRNA-​targeting strategies have been 
shown to mediate beneficial effects in preclinical 
models of CVD. The mitochondrial pool of miR-378 
increases in the course of diabetic cardiomyopathy in 
mice, and intraperitoneal administration of a miR-378 
antagonist mediates cardioprotection, linked with the 
preservation of mitochondrially encoded ATP synthase 
subunit a (MT-​ATP6) synthesis301. The mitochondrial 
levels of mitochondrially encoded cytochrome b (MT-​
CYB) are significantly lower in hearts from rats with 
spontaneous hypertension than in control hearts from 
Wistar rats, associated with an upregulation in the 
mitochondrial pool of miR-21 (which promotes Cytb 
translation)302. In line with the hypothesis that miR-
21 upregulation constitutes a compensatory response 
to decreased MT-​CYB levels and consequent ROS 
overgeneration, intravenous delivery of an adenoviral 
vector for the overexpression of miR-21 in rats with 
spontaneous hypertension mediates short-​term bene­
ficial effects on systolic blood pressure and long-​term 
cardioprotection302. miR-106a is robustly upregulated 
in the hypertrophic myocardium, along with a pro­
found downregulation of MFN2, and data from cul­
tured cardiomyocytes exposed to miR-106a mimics or 
antagonists suggest that antagonizing miR-106a might 
contribute to the restoration of MFN2 levels and conse­
quent rescue of mitochondrial functions303. miR-324-5p 
and miR-761 are negative regulators of mitochondrial 
fission, and intravenous delivery of a miR-324-5p or 
miR-761 mimic limits apoptotic RCD and tissue dam­
age in the myocardium of mice exposed to ischaemia– 
reperfusion304,305. Similarly, administration of a  
miR-499 antagonist (which also inhibits mitochon­
drial fission) exacerbates infarct size in mice exposed 
to ischaemia–reperfusion306. Expression of miR-33a 
and miR-33b is markedly increased in human carotid 
atherosclerotic plaques compared with normal arter­
ies, and treatment of Apoe−/− mice with miR-33 antag­
onists reduces arterial atherosclerotic lesions along 
with the normalization of mitochondrial functions307. 
Additional progress is required for miRNA-​targeting  
agents to enter clinical development308.

Obstacles in the development of MTAs
Despite an extraordinary experimental effort spanning 
over the past 3 decades, virtually no MTAs are currently 
approved for use in patients with CVD. We surmise 
that such a dismal situation is linked (at least in part) to 
pharmacodynamic and pharmacokinetic issues, a hith­
erto fragmentary knowledge of the molecular mech­
anisms behind mitochondrial processes, and a rather 
simplistic appreciation of the pathophysiology of some 
cardiovascular disorders.

Pharmacological issues. Multiple MTAs have limited 
pharmacological specificity for their mitochondrial tar­
gets. Cyclosporine A and other CypD-​targeting agents 
are perhaps the most representative examples of this 
problem. Cyclosporine A and sanglifehrin A potently 
inhibit MPT by binding to CypD, de facto mediating 
robust cytoprotective effects in rodent models of CVD 
and other pathologies associated with MPT-​dependent 
tissue loss278. However, both cyclosporine A and sangli­
fehrin A also enable the binding of peptidyl-​prolyl 
cis-​trans isomerase A (PPIA) to the heterodimeric 
phosphatase calcineurin, resulting in potent calcineu­
rin inhibition and consequent complete blockage of 
T cell activation309. With systemic administration, 
the immunosuppressive effect of cyclosporine A and 
sanglifehrin A are prominent, as demonstrated by the 
fact that cyclosporine A is approved for use in various 
clinical settings as an immunosuppressant285,286. Novel 
CypD inhibitors that lack immunosuppressive activity 
such as Debio-025 and NIM811 are currently being 
developed278. In addition, attention is being focused 
on strategies for the targeted delivery of cyclosporine 
A to the myocardium. In this setting, promising results 
have been obtained with poly(lactic-​co-glycolic acid) 
(PLGA) nanoparticles incorporating cyclosporine 
A, which were more potent than cyclosporine A at 
limiting ischaemia–reperfusion injury in mice in the 
absence of alterations in the myocardial recruitment 
of inflammatory monocytes310.

Untargeted antioxidants also have specificity issues 
because, on entering the cell, antioxidants can quench 
ROS from multiple (not necessarily mitochondrial) 
sources, which limits the purely mitochondrial activ­
ity of these compounds. Multiple strategies have been 
successfully used to target antioxidants specifically 
to mitochondria, most of which harness the capacity 
of cationic molecules to accumulate spontaneously 
within the mitochondrial matrix mediated by the 
mitochondrial transmembrane potential (Δψm)311,312. One of 
the major issues with this approach, potentially decreas­
ing its therapeutic value, is that dysfunctional mitochon­
dria often have decreased Δψm and, consequently, are 
unable to accumulate cationic molecules313. Alternative 
techniques for mitochondrial delivery, including the use 
of lipophilic cationic peptides314, also rely on the Δψm 
and, therefore, cannot circumvent this issue. Similarly, 
mitochondrial proteins encoded by the nuclear genome 
enter the mitochondrial matrix by a Δψm-​dependent 
mechanism315. Thus, devising a strategy for the targeted 
delivery of molecules to dysfunctional mitochondria will 
be important. The surface properties of permeabilized 
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Particle of 1–100 nm in size 
surrounded by an interfacial 
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inorganic molecules, or organic 
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biological and biophysical 
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transmembrane potential
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mitochondrial membrane by 
the respiratory chain. The Δψm 
drives multiple mitochondrial 
functions, including ATP 
synthesis and protein 
transport.
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mitochondria (including PINK1 and PARK2 accumula­
tion, as well as extensive ubiquitylation)6 could be useful 
but remain unexplored in this context.

Another pharmacological obstacle in the devel­
opment of clinically useful MTAs relates to pharma­
cokinetics and biodistribution. In the absence of a 
tissue-​targeting strategy, systemically administered 
MTAs are confronted by large numbers of mitochon­
dria outside the cardiovascular system, which operate 
(at least to some degree) as a sink to limit bioavail­
ability at diseased sites. Cardiomyocytes contain more 
mitochondria than many other cell types316, which 
could potentially favour MTA accumulation, but so 
do myocytes and neurons, and the skeletal muscle 
largely exceeds the myocardium in terms of mass. 
These considerations suggest that some MTAs deliv­
ered systemically at safe doses cannot reach bioactive 
levels at the mitochondrial compartment of diseased 
cells from the cardiovascular system. Strategies to tar­
get MTAs to specific cells of the cardiovascular system, 
such as PLGA nanoparticles310, might (at least partially)  
circumvent this obstacle.

Lack of precise mechanistic knowledge. Despite 
considerable advances in the understanding of many 
mitochondrial processes involved in the pathogenesis 
of CVD, precise mechanistic knowledge is often lack­
ing. Perhaps the best example of our lack of knowledge 
of mitochondrial processes comes from MPT317. The 
concept that MPT results from the activity of a supra­
molecular entity assembled at the interface between the 
inner and outer mitochondrial membranes, generally 
referred to as the permeability transition pore complex 
(PTPC), is widely accepted171. However, the precise 
molecular composition of the PTPC remains obscure, 
and multiple other aspects of the PTPC biology (includ­
ing its potential links with the F1Fo ATP synthase) are 
still a matter of intense debate, despite >2 decades of 
experimental work on this topic317,318. This lack of pre­
cise mechanistic knowledge of mitochondrial processes 
reflects an intrinsic complexity of the system and the 
lack of good indicators of mitochondrial (dys)function 
for use in vivo.

Several mitochondrial proteins are strictly required 
for embryonic development or adult survival, gener­
ally owing to their essential bioenergetic functions. 
One notable example is cytochrome c, somatic (CYCS), 
which functions as an electron shuttle of the respiratory 
chain319. Because Cycs−/− mice die in utero, investigating 
the role of CYCS in RCD in vivo called for the develop­
ment of refined genetic models320. Similar models have 
not yet been generated for the vast majority of mito­
chondrial proteins with a prominent vital function319. 
Another large group of mitochondrial proteins exists 
in multiple isoforms that have a large degree of genetic 
redundancy317. For instance, the mouse genome encodes 
at least three distinct variants of the PTPC component 
adenosine nucleotide translocase (Slc25a4, Slc25a5, and 
Slc25a31) and of the ATP synthase Fo complex sub­
unit C (Atp5g1, Atp5g2, and Atp5g3)321,322. This genetic 
redundancy complicates considerably the generation of 
functional knockout models for in vivo studies, although 

it also presumably reflects the critical requirement for 
mitochondrial ATP synthesis for life (implying that 
complete knockout models might not be viable). In 
addition, some mitochondrial proteins have functional 
redundancy, meaning that they can substitute for each 
other in a specific activity. This functional redundancy 
seems to be the case for multiple components of the 
PTPC, at least in some experimental models317. These 
observations exemplify the intrinsic complexity of  
multiple mitochondrial processes.

Despite the existence of a variety of probes for in vitro 
use, monitoring mitochondrial function in vivo thus far 
has proved challenging. Carbonylation of circulating pro­
teins or lipoproteins has been used to monitor oxidative 
stress in the context of CVD323. However, this technique 
per se does not enable the identification of the tissue 
experiencing oxidative damage, nor the precise source 
of ROS. Measuring the carbonylation of cardiac pro­
teins, such as myosin-​binding protein C, cardiac-​type 
(MYBPC), might constitute an improved alternative, 
although this approach also does not enable the iden­
tification of the ROS source and it can be performed 
only post-​mortem324. Mass-​spectrometry-based profil­
ing of energy metabolites in blood has been proposed 
as a surrogate biomarker of mitochondrial dysfunc­
tion in the context of HF325, but the wide applicability 
of these findings remains untested. One promising 
approach to monitor mitochondrial dysfunction in 
preclinical models of CVD is provided by the so-​called 
MitoTimer mouse, a mouse strain engineered to express 
a mitochondria-​targeted mutant of the DsRed fluores­
cent protein (which shifts to red fluorescence when 
oxidized) under the control of a cardiomyocyte-​specific 
promoter326,327. MitoTimer enables the study of mito­
chondrial structure, redox state, and mitophagic dis­
posal by fluorescence microscopy on fixed tissue326,327. 
Finally, multiple radioactive tracers are being developed 
to monitor mitochondrial functions in real time in the 
setting of CVD26,328. These molecules, some of which are 
already approved for use in humans (for different appli­
cations), might constitute preferential tools to study the 
links between mitochondrial dysfunction and multiple 
forms of CVD in patients.

Limited appreciation of the multifactorial nature of 
CVD. All cardiovascular disorders are complex patho­
logical entities that develop in the context of multiple cel­
lular, histological, and systemic processes including (but 
not limited to): an initial attempt of cells to cope with 
potentially detrimental perturbations of their micro­
environment for the restoration of cellular homeostasis; 
the failure of such an adaptive mechanism, culminat­
ing with the initiation of RCD coupled to inflammatory 
responses; the establishment of acute local inflamma­
tion after the recruitment of immune cells, at least partly 
linked to the disposal of dead cells and cell remnants; 
and the initiation of repair processes, either culminating 
with resolved inflammation and fibrosis (if the initial 
perturbation of homeostasis is relieved) or proceeding 
chronically along with a continuous wave of RCD and 
low-​degree inflammation (if the initial perturbation of 
homeostasis persists).

Carbonylation
Term generally referring to the 
metal-​catalysed oxidation 
(primary carbonylation) or 
addition of reactive aldehydes 
(secondary carbonylation)  
to amino acid side chains.
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This process is further complicated by at least four 
additional elements. First, the entire process involves 
not only cells from the cardiovascular system (the main 
target of clinically available drugs) but also stromal cells 
and, to a greater extent, immune cells230. Although the 
contribution of immune cells to some forms of CVD 
such as atherosclerosis was appreciated long ago14, the 
role of innate immune mechanisms such as dysregu­
lated type I interferon signalling in HF has just begun to 
emerge242. Second, there is a critical, and we believe often 
underestimated, time component in the pathogenesis of 

most, if not all, cardiovascular disorders. As an exam­
ple, ischaemia–reperfusion injury is often viewed (and 
experimentally modelled) as a rather uniform entity, 
and potential therapeutic interventions administered 
at reperfusion are tested for their capacity to decrease 
infarct size or improve survival. Although these mod­
els are widely viewed as clinically relevant (patients 
with acute MI indeed enter intensive care during the 
ischaemic phase), they are intrinsically unable to dis­
sect the sequence of events initiated at reperfusion, 
many of which have a direct effect on patient survival. 
Third, CVD generally develops in elderly individuals, 
along with a variety of comorbidities, including (but 
not limited to) obesity, diabetes, and declining immune 
functions329. These disorders affect not only the natu­
ral progression of CVD but also its sensitivity to treat­
ment329. However, only a few animal models of CVD that 
are currently available recapitulate such comorbidities. 
Fourth, many cellular processes involved in the patho­
genesis of CVD have a considerable degree of redun­
dancy. For instance, after mammalian cells commit to 
RCD, inhibiting one single variant of the process only 
delays (rather than prevents) cellular demise, and it has 
been argued that actual cytoprotection can be achieved 
only in the course of adaptive responses to perturba­
tion of homeostasis330. This concept casts doubts on the 
hypothesis that pharmacologically blocking RCD in 
diseased cardiovascular cells provides clinical benefits 
(which has been intensively tested with dismal results) 
and suggests that improving the ability of healthy cells 
to cope with perturbations of homeostasis constitutes a 
robust prophylactic strategy. Interestingly, an abundant 
literature established a robust interconnection between 
various components of the molecular machineries 
for RCD and inflammation331. This finding opens the 
intriguing possibility that modulating RCD pathways in 
diseased cardiovascular cells might affect the consequent 
inflammatory responses, de facto mediating beneficial 
effects via cell-​extrinsic circuitries332. Such a possibility 
awaits urgent experimental validation. In support of 
this notion, cyclosporine A, one of the few MTAs cur­
rently approved for use in clinics (although not for the 
treatment of CVD), robustly inhibits MPT and mediates 
potent anti-​inflammatory effects.

Altogether, these observations indicate that 
improved pharmacodynamic and pharmacokinetic 
properties, a refined mechanistic knowledge of mito­
chondrial processes, and a reconsideration of the patho­
genesis of (at least some) cardiovascular disorders, 
together with a redesigned pharmacological audit trail 
(Fig. 3), are instrumental for the development of novel 
MTAs with clinical use.

Conclusions
Robust genetic data demonstrated a crucial role for mito­
chondrial dysfunction in the pathogenesis of multiple 
cardiovascular disorders. Nonetheless, the development 
of MTAs for use in patients with CVD has been rather 
dismal. Thus far, great attention has been focused on 
modulating a single mitochondrial process in cells from 
cardiovascular compartments, and the immunological 
correlates of RCD and RCD-​driven inflammation have 

Pharmacological audit trail
Rational framework to guide 
the development of novel 
therapeutic agents that 
involves assessing the risk of 
failure at any specific stage.
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Fig. 3 | Pharmacological audit trail for the development of novel mitochondria-​
targeting agents for clinical applications. To develop novel, clinically useful 
mitochondria-​targeting agents for the treatment or prevention of cardiovascular 
disease, it is paramount to delineate upfront: the therapeutic paradigms in which 
mitochondrial dysfunctions cause or aggravate cardiovascular disease; specific patient 
subsets in which such alterations might have a predominant role in disease pathogenesis; 
the cell populations that are affected by mitochondrial dysfunction (the diseased cells, 
which do not necessarily overlap with the cell populations that are commonly linked to 
disease pathogenesis); and the nature of mitochondrial dysfunction and how such a 
dysfunction affects the biology of diseased and/or other cells from the cardiovascular or 
immune system (bystander cells). This analysis will potentially enable the identification of 
a mitochondrial target for pharmacological interventions and a candidate drug. Delivery 
platforms tailored to the mitochondrial compartment of diseased cells will have to be 
developed and characterized in conventional pharmacokinetic and pharmacodynamic 
studies, followed by an assessment of mitochondrial, cellular, and microenvironmental 
parameters in both the diseased and bystander cell populations. In the absence of 
biological efficacy , the choice of molecular target, drug candidate, and/or delivery 
platforms will have to be re-​evaluated, with particular attention for immunological 
disease correlates. Otherwise, a cardiovascular response followed by improved patient 
survival might emerge. In the absence of either or both, the entire therapeutic paradigm 
and/or patient selection should be fully reconsidered.



been fairly overlooked. We firmly believe that systemat­
ically addressing CVD as a complex phenomenon that 
is intimately connected with inflammatory responses 
will be instrumental for the development of novel 
agents with clinical applications. Alongside, endowing 
MTAs with superior pharmacological specificity and 
acquiring additional knowledge on the precise molec­
ular mechanisms linking mitochondrial dysfunction to 
CVD pathogenesis, potentially aiming at strategies that 
simultaneously modulate multiple aspects of the disease, 
will be paramount. In this context, it will be important 
to evaluate carefully the cardiovascular effects (or lack 
thereof) of precise genetic interventions targeting mito­
chondrial functions on the basis of the age and sex of 
the animals and the potential existence of compensa­
tory pathways, especially based on functional (rather 
than genetic) redundancy, as well as evaluate the effects 
in the context of pathologically relevant comorbidities.

Deleting specific mitochondria-​relevant genes from 
the embryonic myocardium has consequences that the 
same intervention does not provoke in the adult97,  

which is particularly relevant for the development of 
pharmacological interventions. Data accumulating over 
the past decade point to considerable differences in the 
sensitivity of male versus female rodents to experimen­
tal CVD, and epidemiological data in humans support 
similar conclusions333,334, but little work has been done 
with specific reference to mitochondrial dysfunction335. 
Moreover, whereas the effect of genetic redundancy on 
a specific mitochondrial pathway can be addressed with 
(relatively complex, but feasible) co-​deletion and/or 
depletion strategies336–338, identifying (and investigating) 
functional redundancy is far more complex. Finally, an 
unmet need exists for new rodent models that faithfully 
recapitulate the comorbidities that normally accompany 
CVD in humans329. In conclusion, although the route to 
the identification of clinically useful MTAs is long and 
tortuous, a large amount of evidence suggests that mito­
chondrial dysfunction remains a promising target for the 
treatment of multiple forms of CVD.
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