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Abstract

Inter-organellar contact sites establish microdomains for localised Ca2+-

signalling events. One of these microdomains is established between the

ER and the mitochondria. Importantly, the so-called mitochondria-

associated ER membranes (MAMs) contain, besides structural proteins

and proteins involved in lipid exchange, several Ca2+-transport systems,

mediating efficient Ca2+ transfer from the ER to the mitochondria. These

Ca2+ signals critically control several mitochondrial functions, thereby

impacting cell metabolism, cell death and survival, proliferation and

migration. Hence, the MAMs have emerged as critical signalling hubs

in physiology, while their dysregulation is an important factor that drives

or at least contributes to oncogenesis and tumour progression. In this book

chapter, we will provide an overview of the role of the MAMs in cell

function and how alterations in the MAM composition contribute to

oncogenic features and behaviours.
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17.1 Introduction

Eukaryotic cells are faced with many challenges

to sustain life (Chen and Silver 2012). To tackle

these challenges, nature has come up with cellu-

lar compartmentalisation resulting in different

organelles including the nucleus, endoplasmic

reticulum (ER), mitochondria, peroxisomes and

Golgi apparatus (Diekmann and Pereira-Leal

2013). The ability of eukaryotic cells to restrict

processes to a subcellular localisation brings

about numerous advantages (Chen and Silver

2012). However, to ensure the smooth orchestra-

tion of cellular processes, communication

between the organelles is critical.

One way of inter-organellar communication is

Ca2+ signalling. The fact that Ca2+ is not homo-

geneously distributed throughout the cell makes

it possible to use Ca2+ as a messenger (Clapham

2007). Ca2+ signals typically arise from the ER

and the lysosomes (Berridge et al. 2000; Berridge

et al. 2003). These Ca2+ signals impact the other

organelles via microdomains established by

membrane contact sites (La Rovere et al. 2016;

Raffaello et al. 2016). Important target organelles

of ER-derived Ca2+ signals are the mitochondria,

which help to maintain Ca2+ homeostasis in

the cell (Rizzuto et al. 2012). Ca2+ uptake in

the mitochondria is driven by the negative mito-

chondrial membrane potential (Rizzuto et al.

2000). The outer mitochondrial membrane

(OMM) is freely permeable to Ca2+ due to the

presence of porins, like the type 1 voltage-gated

anion channel (VDAC1) (Gincel et al. 2001;

Rapizzi et al. 2002). While Ca2+ easily reaches

the intermembrane space, a more intriguing

problem was the entry of Ca2+ into the mitochon-

drial matrix. Initial research pointed to the exis-

tence of a mitochondrial uniporter, albeit one

with low affinity for Ca2+ (Carafoli 2012; Marchi

and Pinton 2014). However, the low affinity of

this uniporter could not easily be matched to

observations that Ca2+ was dynamically and effi-

ciently exchanged between the cytosol and the

mitochondria, considering that cytosolic [Ca2+]

is typically in the low-to-middle nanomolar

range (Rizzuto et al. 1998; Csordás et al. 1999;

Carafoli 2012).

The mechanism underlying this seemingly

paradoxical observation is the presence of close

contacts between ER and mitochondria, which

favour quasi-synaptic Ca2+ transfer from the ER

to the mitochondria (Rizzuto et al. 1998; Csordás

et al. 1999). These sites can be isolated biochem-

ically as mitochondria-associated ERmembranes

(MAMs). MAMs are parts of the ER membrane

that are in close proximity to the mitochondrial

membrane and are tethered to it (Szabadkai et al.

2006; van Vliet et al. 2014). At the MAMs, the

distance between the ER and mitochondria is

believed to be approximately 10 to 25 nm

(Rizzuto et al. 1998; Csordás et al. 2006; Marchi

et al. 2014b), allowing proteins situated on the

ER membrane and OMM to interact and enabling

efficient Ca2+-based communication between the

ER and mitochondria (Decuypere et al. 2011;

Rowland and Voeltz 2012; Marchi et al.

2014b). In this way, MAMs provide a

microdomain in which the [Ca2+] is several

folds higher than in the bulk cytosol (estimated

to be >10 μM at the ER-mitochondrial interface)

(Csordás et al. 2010), alleviating the problem of

the paradoxical low affinity of the mitochondrial

Ca2+ uniporter (Rizzuto et al. 1993, 1998). Apart

from Ca2+ homeostasis, MAMs are implicated in

several processes critical to cell function,

e.g. lipid transport, ER stress, apoptosis,

autophagy, inflammation and anti-viral response

(Vance 2014; van Vliet et al. 2014).

Due to their involvement in these specific

functions, MAMs contain a select protein popu-

lation. The inositol 1,4,5-trisphosphate (IP3)

receptor (IP3R) and VDAC1 channels are present

in this sub-organellar domain (Várnai et al. 2005;

Szabadkai et al. 2006), underlying the prominent

role of the MAMs in ER-mitochondrial Ca2+

signalling. Furthermore, proteins indirectly

involved in ER-mitochondrial Ca2+ flux can be

found in and around the MAMs as well. These

include glucose-regulated protein 75 (GRP75)

(Szabadkai et al. 2006), mitofusin-2 (Mfn2)

(de Brito and Scorrano 2008), phosphofurin
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acidic cluster sorting protein-2 (PACS-2) (Myhill

et al. 2008), promyelocytic leukaemia protein

(PML) (Pinton et al. 2011), sigma-1 receptor

(Sig-1R) (Hayashi and Su 2007) and protein

kinase RNA-like endoplasmic reticulum kinase

(PERK) (Verfaillie et al. 2012), amongst others.

Since Ca2+ signalling fulfils an important role in

several cell physiological processes and consid-

ering its dysregulation in pathophysiological

conditions, the expression of these proteins is

often altered, and their functional activity is

converted to promote tumour growth, prolifera-

tion, migration, apoptosis resistance and changes

in cellular metabolism (Urra et al. 2016; Marchi

and Pinton 2016). Furthermore, the MAMs har-

bour an increasing number of oncogenes and

tumour suppressors that functionally impact

ER-mitochondrial Ca2+ transfer and oncogenic

features (Marchi et al. 2014a; Giorgi et al.

2015b; Bittremieux et al. 2016).

In this chapter, we will discuss (1) the MAM

components, including the Ca2+-transport

systems, chaperones and structural proteins that

are present, (2) how MAM components impact

ER-mitochondrial Ca2+ transfer and their struc-

tural organisation and (3) how alterations in the

function of these MAM components drive onco-

genesis and tumour progression. An overview of

the MAM components to be discussed in this

chapter can be found in Fig. 17.1.

17.2 MAM Components

17.2.1 The Ca2+-Signalling Machinery
at the MAMs

17.2.1.1 IP3R
The IP3R is an intracellular Ca2+-release channel,

present in the ER membrane (Ashby and Tepikin

2001; Choe and Ehrlich 2006). IP3Rs are opened

by IP3 (Foskett et al. 2007; Parys and De Smedt

2012; Fedorenko et al. 2014), a second messen-

ger released into the cytosol after phosphatidy-

linositol 4,5-bisphosphate cleavage by

phospholipase C. IP3R activity is tightly con-

trolled by cytosolic [Ca2+] in a biphasic manner

(Iino 1990; Finch et al. 1991; Bezprozvanny

et al. 1991; Parys et al. 1992). The Ca2+-flux

properties of the IP3R are also regulated by

other cellular factors, including ATP, regulatory

proteins (Choe and Ehrlich 2006; Foskett et al.

2007; Parys and De Smedt 2012) and protein

kinases and phosphatases (Vanderheyden et al.

2009). Structurally, the IP3R consists of three

domains: an N-terminal ligand-binding domain,

which is subdivided in a suppressor region and

the IP3-binding core, a central modulatory

domain and a pore-forming region in the

C-terminal tail (Yoshikawa et al. 1999). The

IP3R comes in three different isoforms (IP3R1,

IP3R2 and IP3R3) which are encoded by different

genes (ITPR1, ITPR2 and ITPR3) and display

60–80% homology at the level of the amino

acid sequence (Mikoshiba 2007; Foskett et al.

2007). Sensitivity towards their ligand IP3 as

well as regulation by Ca2+, ATP and phosphory-

lation appears to be isoform specific (Newton

et al. 1994; Miyakawa et al. 1999; Tu et al.

2005; Khan et al. 2006; Betzenhauser et al.

2008; Wagner et al. 2008; Vervloessem et al.

2015).

A subset of IP3Rs is present at the MAMs,

where it is responsible for ER-mitochondrial Ca2+

flux (Várnai et al. 2005; Mendes et al. 2005).

By varying the spatio-temporal pattern of Ca2+

release from the ER, Ca2+ signalling can convey

messages, which are differentially decoded at the

subcellular level (Berridge et al. 2000, 2003). For

example, constitutive low-level IP3R-mediated

ER-mitochondrial Ca2+ transfer maintains mito-

chondrial bioenergetics through stimulation of

mitochondrial respiration and ATP production

(Cárdenas et al. 2010; Kaufman and Malhotra

2014), whereas excessive Ca2+ release from the

ER triggers apoptotic cell death due to mitochon-

drial Ca2+ overload (Giorgi et al. 2012; Morciano

et al. 2015). Hence, IP3Rs located at the MAMs

play an important role in determining cell fate.

Especially IP3R3 seems to be abundant at the

MAMs, since it has been proposed that

pro-apoptotic ER-mitochondrial Ca2+ transfers

preferentially occur via IP3R3 (Blackshaw et al.

2000; Mendes et al. 2005). However, also the other

IP3R isoforms have been implicated in Ca2+-

mediated cell death (Gutstein and Marks 1997;
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Jayaraman and Marks 1997; Assefa et al. 2004; Li

et al. 2009; Akl et al. 2013) and thus may reside in

the MAMs in certain cell types or systems.

17.2.1.2 VDAC1
As described above, Ca2+ released by the IP3R is

able to cross the OMM through VDAC1, a

weakly anion-selective channel that is Ca2+ per-

meable and which is enriched at the MAMs

(Hajnóczky et al. 2002; Shoshan-Barmatz and

Gincel 2003; Colombini 2012). Apart from its

role in mitochondrial Ca2+ transport, VDAC

allows for substrates of the electron transport

chain, like malate, succinate and nicotinamide

adenine dinucleotide, to access the mitochondria

(Shoshan-Barmatz et al. 2010). Moreover,

VDAC’s channel properties permit ATP, pro-

duced by oxidative phosphorylation, as well as

other mitochondrial products like reactive oxy-

gen species (ROS) to diffuse into the cytosol

(Shoshan-Barmatz et al. 2010). Additionally,

VDAC1 oligomers have been implicated in the

release of cytochrome c into the cytosol

(Weisthal et al. 2014). As it were, VDAC

functions as the channel that allows the

mitochondria to communicate with their subcel-

lular environment.

VDAC is able to switch between an open and

a closed state in a voltage-dependent manner.

While the channel is stable in the open state at

low voltages, high voltages cause VDAC to

switch to the closed state (Hodge and Colombini
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Fig. 17.1 MAM components playing a role in
ER-mitochondrial Ca2+ signalling. The MAMs har-

bour a specific protein population consisting of Ca2+-

transport proteins and chaperones, as well as of proteins

that enable their structural organisation. The principal

components of the ER-mitochondrial Ca2+ exchange at

the MAMs are the IP3R and VDAC1, which are physi-

cally coupled by the chaperone protein GRP75. When

Ca2+ is released from the ER by the IP3R, it freely

permeates the OMM via VDAC1, to be transported to

the mitochondrial matrix by the MCU, located in the

IMM. The chaperone Sig-1R is able to modify IP3R-

mediated Ca2+ signalling. Sig-1R is held inactive by bind-

ing to GRP78, but under ER stress binding to GRP78 is

disrupted and Sig-1R interacts with the IP3R, stabilising

the IP3R and enabling proficient Ca2+ signalling even

under conditions of ER stress. The efficiency of Ca2+

exchange between ER and mitochondria is influenced by

the presence and action of tethering proteins like PERK

and Mfn2 and anti-tethering proteins like FATE1. The

functional effect of tethering and anti-tethering proteins

at the MAMs is indicated by arrows facing each other or

arrows pointing in opposite directions, respectively.

Besides its function as a tethering protein, PACS-2 also

contributes to MAM organisation, while simultaneously

having a role in the enrichment of the chaperone calnexin

at the MAMs. Furthermore, calnexin is enriched at the

MAMs by palmitoylation, a process that switches

calnexin function from quality control/protein folding to

ER Ca2+-signalling control by enhancing SERCA activ-

ity. The interaction between calnexin and SERCA2b

appears to be counteracted by the thiol reductase TMX1

(not shown for clarity reasons), which inhibits SERCA2b

activity (For more details, please see text)

228 M. Kerkhofs et al.



1997; Gincel et al. 2000). Interestingly, the open

state shows a weak selectivity towards anions, as

opposed to the closed state, which blocks the

passage of large anionic molecules, while it has

been proposed to be selective for cations (Gincel

et al., 2000; Schein et al., 1976; Shoshan-

Barmatz et al., 2010). At the structural level,

the N-terminus of the protein, which forms an

α-helix, is important for its voltage-dependent

gating (Abu-Hamad et al. 2009). Different mech-

anistic models have been proposed, albeit the

exact mechanism has not been established yet

(Shoshan-Barmatz et al. 2010), and this

voltage-dependency has only been observed

in vitro (Shoshan-Barmatz et al. 2010). Apart

from voltage-dependent gating, the closed or

open state of the channel is affected by

modulators interacting with VDAC1. Examples

include Bcl-XL (Vander Heiden et al. 2000,

2001), hexokinase (Azoulay-Zohar et al. 2004),

tubulin (Rostovtseva et al. 2008), mitochondrial

membrane lipids (Rostovtseva et al. 2006) and

Ca2+ (Báthori et al. 2006).

In mammals, there are three known isoforms

of VDAC: VDAC1, VDAC2 and VDAC3, with

VDAC1 being the isoform that is expressed at the

highest level and consequently has been studied

most extensively (Messina et al. 2012). Recom-

binant expression of VDAC1 enhanced the Ca2+

transfer to the mitochondria (Rapizzi et al. 2002),

yet this property seems not to be unique for

VDAC1, as also the other isoforms display it

(De Stefani et al. 2012). However, there is a

unique role for VDAC1, but not for VDAC2

nor VDAC3, in conveying pro-apoptotic Ca2+

signals to the mitochondria (De Stefani et al.

2012).

17.2.2 The Chaperones

17.2.2.1 GRP75
GRP75 is a chaperone protein belonging to the

heat shock 70 kDa (HSP70) protein family

(Wadhwa et al. 2002a). GRP75 has been found

at different subcellular localisations, e.g. the

cytosol, the mitochondria, the ER and the Golgi

apparatus (Wadhwa et al. 1995; Ran et al. 2000).

Moreover, GRP75 is a pleiotropic protein. For

example, GRP75 located in the mitochondrial

matrix helps to import unfolded proteins into

the matrix in an ATP-dependent manner in coop-

eration with Tim44 (Scherer et al. 1992;

Kronidou et al. 1994; Schneider et al. 1996;

Voos and R€ottgers 2002). Furthermore, GRP75

is thought to play a role in endocytosis as well as

exocytosis (Flachbartová and Kovacech 2013).

At the MAMs, GRP75 plays an important role

in Ca2+ signalling, as it forms a physical link

between the IP3R and VDAC1 (Szabadkai et al.

2006; Betz et al. 2013; Rieusset et al. 2016),

thereby increasing the efficiency of

ER-mitochondrial Ca2+ signalling.

17.2.2.2 Sig-1R
Sig-1R is a chaperone, which was first mistak-

enly identified as an opioid receptor subtype

(Su 1982; Hayashi and Su 2007; Tagashira

et al. 2014). Sig-1R mainly resides in the ER,

specifically at the MAMs, under resting

conditions (Hayashi and Su 2007). There,

Sig-1R is bound to an ER lumen chaperone,

glucose-regulated protein 78 (GRP78, also

known as BiP) (Hayashi and Su 2007). Upon

ER stress, however, this association is broken,

and Sig-1R gains its chaperone function,

targeting its client proteins like the ER stress

sensor inositol-requiring enzyme 1 (IRE1) and

the IP3R, thereby regulating ER-mitochondrial

Ca2+ signalling (cfr. infra) (Hayashi and Su

2007; Mori et al. 2013). Interestingly, Shioda

et al. (2012) reported the existence of a truncated

splice form of Sig-1R, which did not bind to the

IP3R. Overexpression of this splice variant

decreased mitochondrial Ca2+ uptake, while pro-

moting IP3R degradation, as opposed to the

non-truncated Sig-1R (Shioda et al. 2012). Fur-

thermore, Sig-1R can undergo translocation to

various subcellular localisations upon stimula-

tion by agonists. These locations include the

plasma membrane and the nuclear envelope

(Su et al. 2010; Mavlyutov et al. 2015; Tsai

et al. 2015; Chu and Ruoho 2016).
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17.2.2.3 Calnexin
Calnexin is another ER chaperone that is enriched

at the MAMs and this in a palmitoylation-

dependent manner (Lynes et al. 2012). This chap-

erone interacts with glycoproteins that are

monoglucosylated (Hebert et al. 1995). Function-

ally, calnexin improves efficiency of ER protein

folding and helps retaining misfolded proteins in

the ER (Lamriben et al. 2016). Furthermore,

calnexin modifies Ca2+ signalling in the cell

through its functional interaction with sarco/endo-

plasmic reticulum Ca2+-ATPase 2b (SERCA2b)

(Roderick et al. 2000). When the cytosolic domain

of calnexin is phosphorylated, the interaction

inhibits SERCA2b activity, diminishing intracellu-

lar Ca2+ oscillations (Roderick et al. 2000). In

further work, it was shown that calnexin interaction

with SERCA was critically dependent on calnexin

palmitoylation and was impaired upon ER stress

induction (Lynes et al. 2013). The binding of

calnexin to SERCA2b appeared to promote its

activity, given the higher ER Ca2+-store content

of cells overexpressing wild-type calnexin, but

not a palmitoylation-deficient calnexin mutant

(Lynes et al. 2013). Interestingly, the binding of

calnexin to SERCA2b is influenced by the

thioredoxin-related transmembrane protein

(TMX1), which is also targeted to the MAMs

through palmitoylation (Lynes et al. 2012), since

knockout of TMX1 improved binding of calnexin

to SERCA2b (Krols et al. 2016; Raturi et al. 2016).

TMX1 and calnexin thus may target overlapping

binding sites in SERCA2b. As such, the stimula-

tory effect of calnexin on SERCA activity may be

partially related to its ability to reduce the binding

of TMX1, which inhibits SERCA activity, to

SERCA2b (Krols et al. 2016; Raturi et al. 2016).

17.2.3 Proteins Defining MAM
Structure

17.2.3.1 Mfn2
Mfn2, a GTPase protein situated in the OMM,

was first studied for its function as a mitochon-

drial fusion protein, together with its homologue

Mfn1 (Ranieri et al. 2013). Interestingly, in 2008

it was found that Mfn2 is also located on the ER

membrane and enriched at the MAMs, where it

acts as a tether that links mitochondria to the ER

and supports efficient Ca2+ signalling between

the two organelles (de Brito and Scorrano

2008). This tethering function of Mfn2 is realised

by the interaction of Mfn2 in the ER membrane

with Mfn1 or Mfn2 localised in the OMM.

Recently, however, a discussion has risen about

the role of Mfn2 as a mitochondrial tether in the

MAMs. Ultrastructural analyses as well as func-

tional, biochemical and genetic approaches

showed that Mfn2 antagonised

ER-mitochondrial tethering (Cosson et al. 2012;

Filadi et al. 2015), since ablation of Mfn2

resulted in an increased inter-organellar proxim-

ity. It was proposed that Mfn2 functions as an

anti-tether that maintains a correct, non-toxic

distance between both the ER and the

mitochondria (Filadi et al. 2015). However,

very recently, the role of Mfn2 as a bona fide
ER-mitochondrial tether has been confirmed in a

series of experiments aiming to critically reap-

praise its function (Naon et al. 2016).

17.2.3.2 PACS-2
PACS-2 is an ER-associated protein involved in

retrograde ER-Golgi trafficking of multiple

proteins (Youker et al. 2009). This sorting pro-

tein was initially studied for its role in mitochon-

drial network and MAM organisation (Simmen

et al. 2005). PACS-2 regulates communication

between the ER and the mitochondria by

controlling contact sites between the two

organelles (Simmen et al. 2005). In this way,

PACS-2 mediates apoptosis (cfr. infra) and ER

homeostasis, while promoting transfer of lipids

between the ER and mitochondria (Simmen et al.

2005). Interestingly, PACS-2 can also assist in

calnexin enrichment at the MAMs in concert

with the coat protein complex COPI (Myhill

et al. 2008). Also mechanistic target of

rapamycin complex 2 (mTORC2) can be found

at the MAMs where it regulates MAM integrity

via PACS-2 phosphorylation in a protein kinase

B (PKB/Akt)-dependent way (Betz et al. 2013).
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17.2.3.3 PERK
PERK, a kinase protein located in the ER mem-

brane, functions as an ER stress sensor that

controls the unfolded protein response (UPR),

alongside IRE1 and activating transcription fac-

tor 6 (ATF6) (Sano and Reed 2013). The main

effect of the UPR on the cell is the diminish-

ment of mRNA translation to avoid further

accumulation of improperly folded proteins,

while at the same time, the transcription of

chaperones is stimulated (Sano and Reed

2013). Furthermore, retrograde transport of

unfolded proteins to the cytosol takes place,

where they undergo ubiquitination and

subsequent degradation (Sano and Reed 2013).

PERK is mainly responsible for the halt of

translation by virtue of phosphorylating eukary-

otic translation initiation factor 2 (eIF2α), a

protein needed for correct mRNA translation

(Sano and Reed 2013). The phosphorylation

disrupts recycling of eIF2α from its GTP-free

form to its GTP-bound form (Sano and Reed

2013). Furthermore, eIF2α phosphorylation is

responsible for the preferential translation of

UPR-involved genes. In addition, PERK

phosphorylates nuclear erythroid 2 p45-related

factor 2 (Nrf2) inducing the expression of anti-

oxidant genes to alleviate oxidative stress

(Cullinan and Diehl 2004). When ER stress

continues for a longer period, the cell will

brace itself for apoptosis. In this process,

PERK contributes by promoting the transcrip-

tion of CCAAT-enhancer-binding protein

homologous protein, a pro-apoptotic transcrip-

tion factor (Oyadomari and Mori 2004; Sano

and Reed 2013). Moreover, PERK was shown

to be involved in autophagy regulation via

ATF4-dependent transcription of autophagy-

related (ATG) genes (Harding et al. 2000).

Additionally, PERK also serves as an

ER-mitochondria tether at the MAMs, thereby

facilitating the propagation of ROS signals

between these two organelles (Verfaillie et al.

2012). Hence, PERK-knockout cells displayed

significantly weaker ER-mitochondria contact

sites, counteracting ROS-triggered apoptosis.

This function of PERK to maintain

ER-mitochondria juxtapositions was indepen-

dent of its kinase activity but required its cyto-

plasmic domains (Verfaillie et al. 2012).

17.2.3.4 Foetal and Adult Testis
Expressed 1 (FATE1)

FATE1 is a protein that belongs to the group of

cancer-testis antigens (CTAs) (Dong et al. 2003),

which is a heterogeneous group of proteins with

limited expression in normal testis tissue. How-

ever, in several types of cancer, these CTAs are

upregulated (Simpson et al. 2005; Whitehurst

2014). Recently, FATE1 was found to reside at

the MAMs where it regulates ER-mitochondrial

distance and ER-mitochondrial Ca2+ flux (cfr.

infra) (Doghman-Bouguerra et al. 2016).

Remarkably, silencing FATE1 led to an

increased sensitivity towards paclitaxel, a che-

motherapeutic drug, in non-small cell lung can-

cer cell lines (Whitehurst et al. 2007).

17.3 MAMs in Cancer

All types of cancer share certain stereotypical

traits, called the hallmarks of cancer (Hanahan

and Weinberg 2011; Giampazolias and Tait

2016). These features, acquired gradually during

the development of tumours, include sustaining

proliferative signalling, resisting cell death,

activating invasion and metastasis, inducing

angiogenesis and rewiring metabolism (Hanahan

and Weinberg 2011; Giampazolias and Tait

2016). Importantly, MAMs and mitochondria

play key roles in many cellular processes such

as cell death, cell migration and energy produc-

tion (Giampazolias and Tait 2016). Therefore,

functioning of these cellular compartments is

frequently altered and affected during acquisition

of the hallmarks of cancer. In this section, we

discuss the role of the proteins listed above in the

various hallmarks of cancer.
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17.3.1 Tumour Growth, Proliferation
and Metastasis

17.3.1.1 The IP3R
Since Ca2+ signalling controls a plethora of cel-

lular functions that relate to cancer hallmarks,

IP3Rs have emerged as important regulators of

tumour biology. A striking example of the impor-

tance of the receptor’s function is the observation

that lack of IP3R-mediated Ca2+ signalling in

thymocytes causes the development of

malignancies in mice, resembling T-cell acute

lymphoblastic leukaemia (Ouyang et al. 2014).

Furthermore, there is a growing body of evidence

that suggests IP3R-mediated Ca2+ release plays a

role in cancer cell migration (Wei et al. 2009,

2012; Huang et al. 2016). Also, migrating

fibroblasts displayed cytosolic Ca2+ flickers

mediated in part by IP3R2 (Wei et al. 2009,

2012). Furthermore, IP3R3 is overexpressed in

glioblastoma cells, whereas reducing its expres-

sion via siRNA attenuated migration via inhibi-

tion of cytosolic Ca2+ signalling (Kang et al.

2010). Recently, it was also found that

overexpression of ER protein 44, which nega-

tively regulates Ca2+ release, prevented migra-

tion of A549 cells by suppressing IP3R2-

dependent Ca2+ release (Huang et al. 2016).

Moreover, the IP3R was shown to play a role in

MCF-7 cell growth, since growth inhibition

occurred upon blockage of the IP3R (Szatkowski

et al. 2010). Interestingly, 17-β-estradiol, which
induces cell proliferation in MCF-7 cells, may do

so by elevating IP3R3 levels (Szatkowski et al.

2010). In the same cell line, a molecular and

functional coupling between IP3R3 and large-

conductance Ca2+- and voltage-dependent K+

(BKCa) channels was responsible for

ATP-induced proliferation in a cyclin-D1/

cyclin-dependent kinase 4-dependent mecha-

nism (Mound et al. 2013). Ablation of IP3R3 or

BKCa resulted in attenuated proliferation (Mound

et al. 2013). Interestingly, the IP3R is also

implied in senescence (Wiel et al. 2014),

protecting cells from tumour onset and progres-

sion (Ben-Porath and Weinberg 2004; Collado

and Serrano 2010; Kang et al. 2011). It was

shown that loss of IP3R2 allowed cells to avoid

oncogene-induced senescence (Wiel et al. 2014).

This was also the case for the mitochondrial Ca2+

uniporter. This points to mitochondrial Ca2+

accumulation playing an important role in senes-

cence through lowering the mitochondrial mem-

brane potential and ROS (Wiel et al. 2014).

17.3.1.2 VDAC1
The expression levels of VDAC1 are correlated

with tumour growth in different types of cancer.

Zhang et al. showed that a decrease in miRNA-

320a allowed for a high VDAC1 expression in

non-small cell lung cancer cells and that this was

correlated with the initiation and progression of

cancer (Zhang et al. 2016b). Furthermore, cervi-

cal cancer tissues positive for VDAC1 showed an

increased tumour size and deep stromal invasion

compared to tissues negative for VDAC1

(Wu et al., 2016a). In the same study, VDAC1

knockdown inhibited cell proliferation and

migration (Wu et al. 2016a), which was also

shown in human papilloma virus-related cervical

cancers (Zhang et al. 2016a). This evidence

suggests that VDAC1 promotes tumour survival

and invasion. Interestingly, knockout of VDAC1

in MEF cells increased proliferation rates under

hypoxic conditions through activation of the

extracellular signal-regulated protein kinase

(ERK) 1/2 pathway (Brahimi-Horn et al. 2015).

Moreover, VDAC1’s role in Ca2+ signalling

has been linked to cell migration. Myeloid cell

leukaemia sequence 1 (Mcl-1), an anti-apoptotic

protein from the B-cell lymphoma 2 (Bcl-2) pro-

tein family, is able to bind VDAC1 with high

affinity, thereby seemingly promoting mitochon-

drial Ca2+ uptake. Mcl-1 binding to VDAC1

promoted cell migration without affecting cell

proliferation. The pro-migration effect of Mcl-1

could be antagonised by VDAC-based peptides

that interfere with VDAC1/Mcl-1-complex for-

mation (Huang et al. 2014). Also other anti-

apoptotic Bcl-2 proteins, including Bcl-XL,

inhibit VDAC1-mediated Ca2+ uptake in the

mitochondria (Arbel et al. 2012; Monaco et al.

2015; Vervliet et al. 2016). The mechanism

involved Bcl-XL’s Bcl-2 homology 4 (BH4)

domain and VDAC1’s N-terminus (Monaco

et al. 2015). The inhibitory impact of Bcl-2
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proteins on VDAC1-mediated Ca2+ uptake in the

mitochondria is consistent with the original

papers that describe Bcl-2 proteins as negative

regulators of VDAC1-mediated apoptosis

(Shimizu et al. 1999, 2000).

17.3.1.3 The Chaperones
A study by Vilner et al. (1995) demonstrated that

Sig-1R was overexpressed in a large range of

cancer cell lines, both human and rodent. Later

studies added that there might be a link between

Sig-1R overexpression and metastasis. This was

proposed by Aydar et al. since the highest

expression levels were found in metastatic cell

lines (Aydar et al. 2006). Sig-1R mRNA levels

were also found to be higher in invasive breast

cancer tissue derived from patients, compared to

normal breast tissue (Wang et al. 2004); Sig-1R

mRNA was overexpressed in colorectal cancer

and colorectal cancer liver metastases (Skrzycki

and Czeczot 2013), and overexpression of

Sig-1R in hilar cholangiocarcinoma was linked

to poor differentiation, lymph node metastasis

and advanced disease stage (Xu et al. 2014).

Concerning the molecular mechanisms that

are possibly involved, the ability of Sig-1R to

interact with several ion channels seems to be

important for various oncogenic features (Crottès

et al. 2013). In K562 myeloid leukaemia cells,

the link between Sig-1R and expression of the

potassium ion channel human ether-à-go-g-

related gene (hERG), which controls several pro-

cesses like migration and adhesion (Pillozzi et al.

2007, 2011), was investigated (Crottès et al.

2011). It was observed that Sig-1R is important

for hERG maturation by improving maturation

efficiency and stabilisation of the α-subunit
(Crottès et al. 2011). Other ion channels that

interact with Sig-1R and that play a role in cancer

include L-type voltage-gated Ca2+ channels,

voltage-gated Na+ channels and Ca2+-activated

K+ channels (for extensive review, see Crottès

et al. 2013). However, the interaction of Sig-1R

with these ion channels is not necessarily related

to its role at the MAMs.

Not only by directly interacting with other

proteins, but also indirectly, Sig-1R is able to

modify properties of ion channels: Palmer et al.

(2007) found that Sig-1R can bind cholesterol

and stabilise lipid rafts via the insertion of cho-

lesterol. In turn, the cholesterol level of lipid rafts

can impact the signalling molecules present in

these domains (Gniadecki 2004; Palmer et al.

2007), thereby altering the activity of ion

channels nearby.

In addition, GRP75 overexpression is

correlated with tumour growth and invasion

(Kaul et al. 1998; Yi et al. 2008; Jin et al.

2016). Also, in K562 cells high expression levels

of GRP75, as well as other chaperone proteins,

coincided with resistance towards the

proteasome inhibitor bortezomib (Kliková et al.

2015), and inhibition of GRP75 reduced cisplatin

resistance in ovarian cancer (Yang et al. 2013).

Also calnexin, as a chaperone, may play a role

in tumoural growth in response to growth factors.

Lakkaraju and van der Goot (2013) found that in

squamous carcinoma cells, caspase-8-mediated

cleavage of calnexin occurs upon stimulation of

the cells with epidermal growth factor. This

yields a calnexin fragment that inhibits protein

inhibitor of activated STAT3 (PIAS3), an inhibi-

tor of signal transducer and activator of transcrip-

tion 3 (STAT3), which functions as an oncogenic

transcription factor (Lakkaraju and van der Goot

2013). This, in turn, promotes STAT3-dependent

transcription and possibly tumour growth

(Lakkaraju and van der Goot 2013).

17.3.1.4 Proteins Defining MAM
Structure

The importance of Mfn2 for cell proliferation is

suggested by findings in vascular smooth muscle

cells: overexpression of Mfn2 in cultured vascular

smooth muscle cells inhibited proliferation by

blocking the mitogen-activated protein kinase

(MAPK)/ERK signalling pathway (Chen et al.

2004). This mechanism was found to be indepen-

dent of its role in mitochondrial fusion (Chen et al.

2004; Guo et al. 2007). In concert with

observations of Mfn2 acting in an anti-

proliferative way, Zhang et al. (2013) showed

that Mfn2 expression was lower in gastric tumours

than in normal mucosal tissue and that expression

levels were negatively correlated with tumour

size, while Wu et al. (2016b) observed that poor
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overall survival in hepatocellular carcinoma

patients correlated with low Mfn2 expression

levels. Also in primary breast cancer, a loss of

Mfn2 was detected (Kannan et al. 2016). Strik-

ingly, knockdown of TMX1 in HeLa and A375P

melanoma cells generates a similar phenotype as

low-level Mfn2 expression (Raturi et al. 2016).

This includes increased SERCA activity and

altered MAM structure (Raturi et al. 2016). In

the case of TMX1, Raturi et al. propose that the

stimulatory effect on tumour growth upon TMX1

knockdown is due to an elevated Ca2+ retention

capacity at the ER combined with an increased

ER-mitochondrial distance (Raturi et al. 2016).

This, in turn, leads to reduced ER-mitochondrial

Ca2+ flux and impairment of mitochondrial

metabolism, possibly contributing to the Warburg

effect (cfr. infra) (Raturi et al. 2016).

Interestingly, another study revealed that

Mfn2 deficiency decreased proliferation by

blocking autophagy in HeLa cells (Ding et al.

2015). Similarly, A549 human lung adenocar-

cinoma cells showed disturbed cell prolifera-

tion and invasion upon Mfn2 knockdown (Lou

et al. 2015). A recent bioinformatics study

conducted on the same cell line revealed that

Mfn2 knockdown resulted in repression of

genes implicated in cell-cycle progression as

well as DNA replication and MAPK signalling

pathway (Lou et al. 2016). These opposing data

suggest that Mfn2’s role in cancer is highly

context dependent. It may however also

relate to a critical window for proper

ER-mitochondria distance, in which too close

apposition results in excessive apoptosis sensi-

tivity, whereas too far apposition results in

defective energetic and metabolic features, as

discussed elsewhere (Naon and Scorrano 2014).

PERK, the ER stress sensor, also fulfils this

double-edged function in relation to tumour

growth. For example, PERK activity has been

linked to cell-cycle arrest (Brewer and Diehl

2000; Hamanaka et al. 2005). Since PERK is

involved in a general slowdown of the translation

process, several proteins are impacted including

the drivers of the cell cycle, which comprise the

cyclins (Brewer and Diehl 2000; Hamanaka et al.

2005). In this case, cyclin D1’s expression is

severely altered due to its short half-life (Brewer

and Diehl 2000; Hamanaka et al. 2005). This

brings about a redistribution of p21, which

blocks cyclin-dependent kinase 2, resulting in

cell-cycle arrest in the G1 phase (Brewer and

Diehl 2000; Hamanaka et al. 2005).

In addition, PERK causes an increase in p53

through decreased E3 ubiquitin ligase human

double minute 2 (Hdm2)-dependent removal,

promoting apoptosis when a certain threshold is

reached (Li et al. 2006; Zhang et al. 2006).

Another feature of this p53 accumulation is the

induction of p21 and subsequent cell-cycle

arrest, as stated above (Ono et al. 1997). Further-

more, PERK is involved in the upregulation of

p47, an N-terminal truncated analogue of p53,

which mediates cell-cycle arrest in the G2 phase

(Bourougaa et al. 2010). Conversely, PERK has

been proposed to improve the degradation of p53

in a glycogen synthase kinase 3 β (GSK3β)-
dependent manner (Qu et al. 2004; Pluquet

et al. 2005).

Also, PERK and its downstream signalling

axis have been implicated in metastasis of sev-

eral cancers, e.g. cervix cancer, breast cancer and

head and neck squamous cell carcinoma

(Nagelkerke et al. 2013, 2015; Mujcic et al.

2013). Epithelia to mesenchymal transition,

which is an indication of the level of invasive-

ness, is also correlated with PERK signalling,

which is underpinned by observations in primary

breast cancer, colon cancer, gastric cancer and

lung cancer (Feng et al. 2014). Furthermore, the

human epidermal growth factor receptor

2 (HER2)/Neu protein is able to induce PERK

activity, which allows for redox homeostasis via

Nrf2 (Bobrovnikova-Marjon et al. 2010). Subse-

quently, loss of PERK in HER2/Neu-dependent

mammary adenocarcinoma was responsible for

growth attenuation and decreased metastasis

(Bobrovnikova-Marjon et al. 2010).

About the role of PACS-2 in tumour progres-

sion, not much is known. However, PACS-2 was

shown to be a regulator of ADAM17, a

metalloproteinase that is involved in epithelial

development, growth and tumour progression

(Dombernowsky et al. 2015). More specifically,

loss of PACS-2 diminished ADAM17 levels at
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the cell surface due to increased degradation

(Dombernowsky et al. 2015).

17.3.2 Apoptosis

Another major hallmark of cancer cells is their

ability to evade apoptosis (Hanahan and

Weinberg 2011). As briefly indicated before,

Ca2+ signalling is able to regulate the apoptotic

process. While Ca2+ oscillations were found to

be pro-survival signals due to stimulation of crit-

ical enzymes of the tricarboxylic acid cycle

(TCA), high-amplitude Ca2+ signals that last for

a longer time can cause apoptosis through mito-

chondrial Ca2+ overload (Hajnóczky et al. 1995;

Orrenius et al. 2003; Joseph and Hajnóczky

2007; Roderick and Cook 2008; Denton 2009).

This, in turn, causes the opening of the mitochon-

drial permeability transition pore, mitochondrial

swelling and eventually the release of

pro-apoptotic factors like cytochrome c in the

cytosol (Halestrap 2014; Morciano et al. 2015;

Jonas et al. 2015). In order to prevent Ca2+-

induced apoptosis and/or to promote Ca2+-

dependent bioenergetics, cells may rewire their

Ca2+-signalling toolkit (Capiod et al. 2007; Chen

et al. 2013; Stewart et al. 2015).

17.3.2.1 The IP3R
The IP3R exerts a central role in

ER-mitochondrial Ca2+ signalling, making it

prone to the electrical rewiring of the cancer

cell. IP3R expression levels are altered in various

cancers, supporting the critical role of the IP3R in

Ca2+ signalling from the ER. For instance,

hormone-refractory prostate tumour cells

showed increased levels of IP3R1 (Boutin et al.

2015). This is thought to increase Ca2+ leakage

from the ER, so that less Ca2+ is available for the

induction of apoptosis by mitochondrial Ca2+

overload (Boutin et al. 2015). Interestingly, blad-

der cancer cells evade cell death by doing the

opposite: treatment with cisplatin diminished

IP3R1 levels, provoking cisplatin resistance

(Tsunoda et al. 2005). By lowering IP3R expres-

sion levels, cancer cells prevent the event of toxic

mitochondrial Ca2+ overload (Prevarskaya et al.

2014). Furthermore, some diffuse large B-cell

lymphomas (DLBCLs) express high levels of

IP3R2 (Akl et al. 2013). The reason for this

IP3R2 elevation remains elusive, but one

hypothesis is that in metabolically stressed can-

cer cells, low levels of ATP, a positive regulator

of the IP3R, are insufficient to provide the basal

Ca2+ signalling needed to fuel mitochondrial

bioenergetics (Akl et al. 2013; Akl et al. 2014).

Hence, by upregulation of the IP3R2, which is

the IP3R isoform most sensitive to IP3, these

cancer cells are able to survive (Akl et al.

2013, 2014).

In cancer cells, the process of apoptosis is not

only influenced by modifying the expression

levels of the IP3R, but also by altering its Ca2+-

release properties. For instance, phosphorylation

of the IP3R dramatically changes its function

(Vanderheyden et al. 2009). PKB/Akt is a

serine-threonine kinase that phosphorylates the

IP3R C terminally via a substrate motive that is

conserved in all isoforms (Khan et al. 2006).

While ER Ca2+ levels remain unaffected in

HeLa cells overexpressing PKB/Akt, IP3R-

dependent ER Ca2+ release was shown to be

negatively affected (Szado et al. 2008; Marchi

et al. 2008). Again, this mechanism may protect

against mitochondrial Ca2+ overload and

subsequent apoptosis (Marchi et al. 2008). Fur-

thermore, it was shown that the protective effect

of PKB/Akt overexpression was isoform spe-

cific: in COS7 cells, almost completely lacking

IP3R1, PKB/Akt activation led to a decreased

IP3-induced Ca2+ release and conferred a protec-

tive effect against apoptosis (Marchi et al. 2012).

However, in SH-SY 5Y cells, lacking IP3R3, ER

Ca2+ release was not modified, while expressing

the type 3 isoform in these cells restored the

protective effect (Marchi et al. 2012). This

suggests that the anti-apoptotic effect of

PKB/Akt is mediated in an IP3R3-dependent

way (Marchi et al. 2012). The effect of PKB/

Akt-mediated phosphorylation is thought to be

directly counteracted by phosphatase and tensin

homolog (PTEN), which also localises at the

MAMs and dephosphorylates the IP3R, thereby

increasing again the IP3R-mediated Ca2+ release

(Bononi et al. 2013).

17 Alterations in Ca2+ Signalling via ER-Mitochondria Contact Site Remodelling in Cancer 235



A recent study showed that extra-nuclear

PML contributes to protection against Ca2+-

mediated apoptotic cell death via interaction

with the IP3R (Giorgi et al. 2010). PML located

at the MAMs physically interacts with the IP3R3.

In cells expressing ER-targeted PML, apoptotic

stimuli induced a higher cytosolic and mitochon-

drial Ca2+ response (Giorgi et al. 2010). Further-

more, it was revealed that PML-expressing cells

displayed lower levels of phosphorylated IP3R3

and phosphorylated, active PKB/Akt and higher

levels of the phosphatase 2A (PP2A) compared

to PML-negative cells (Giorgi et al. 2010). PML

stimulates pro-apoptotic Ca2+ signalling at the

MAMs by recruiting PP2A to IP3R3-PKB/Akt

complexes (Giorgi et al. 2010), resulting in a

suppressed PKB/Akt-mediated IP3R3 phosphor-

ylation, since PP2A negatively regulates the

activity of PKB/Akt at the ER (Pinton et al.

2011; Bittremieux et al. 2016).

IP3R function can also be stimulated by phos-

phorylation (Gomez et al. 2016). During reperfu-

sion injury of the heart, a fraction of the protein

kinase GSK3β is localised at the sarco/endoplas-

mic reticulum (SR/ER) and the MAMs. There, it

interacts with the IP3R Ca2+-channelling com-

plex, regulating its protein composition and

modulating Ca2+ transfer between the SR/ER

and mitochondria. During hypoxia reoxygena-

tion, GSK3β activity is augmented, resulting in

increased IP3R phosphorylation and IP3R hyper-

activity. Consequently, increased IP3R-mediated

SR/ER-mitochondria Ca2+ transfer leads to

cardiomyocyte cell death. Therefore, inhibition

of GSK3β may protect the heart from lethal

reperfusion injury by cellular Ca2+ overload

(Gomez et al. 2016).

The critical role of IP3R3 underlying cellular

apoptosis sensitivity has also been confirmed

independently in two isogenic cell lines, one of

which expresses oncogenic K-Ras and one in

which this oncogenic allele was deleted via

homologous recombination (Pierro et al. 2014).

The presence of oncogenic K-Ras caused a low-

ering in the ER Ca2+-store content, thereby

decreasing the likelihood of pro-apoptotic Ca2+

transfer and thus decreasing apoptotic sensitivity

(Pierro et al. 2014). This was due to the increased

expression level of IP3R1 relative to that of

IP3R3 in the cell line expressing oncogenic

K-Ras, augmenting basal Ca2+ leak via IP3R1

and suppressing pro-apoptotic Ca2+ transfer into

the mitochondria via the IP3R3 (Pierro et al.

2014).

Apart from phosphorylation and expression

regulation, IP3R-mediated Ca2+ release can be

modulated directly by the binding of an increas-

ing number of oncogenes and tumour

suppressors (Akl and Bultynck 2013;

Bittremieux et al. 2016). Notably, several

members of the Bcl-2-protein family are known

to interact with the IP3R. First, there is the anti-

apoptotic protein Bcl-2 itself, whereas its canon-

ical function comprises the sequestration of

pro-apoptotic Bcl-2-protein family members

like Bik and Bid via its BH3 domain (Youle

and Strasser 2008; Czabotar et al. 2014) evidence

was found that Bcl-2 interacts via its BH4

domain with 20 amino acids in the central, mod-

ulatory part of the IP3R (Rong et al. 2008, 2009;

Monaco et al. 2012). This interaction protects

cells against Ca2+-mediated apoptotic cell death

(Hanson et al. 2008; Rong et al. 2008). The

importance of Bcl-2’s complex formation with

the IP3R became clear in Bcl-2-dependent

chronic lymphocytic leukaemia and in DLBCL

cell lines (Zhong et al. 2011; Akl et al. 2013).

Some subtypes of DLBCL display high levels of

IP3R2, the most sensitive isoform with respect to

IP3 (Akl et al. 2013). Therefore, Bcl-2

overexpression is needed in these cells to avoid

Ca2+-induced apoptosis triggered by the high

expression levels of IP3R2, making these cells

balancing on the edge of apoptosis, a state that

was coined “primed-for-death at the ER” (Akl

et al. 2013; Akl et al. 2014). Following this

concept, TAT-IDP, a peptide mimicking the

IP3R-binding site for Bcl-2, and its derivative

BIRD-2, induced apoptosis by disrupting IP3R/

Bcl-2 interaction and eliciting spontaneous toxic

Ca2+ signalling (Zhong et al. 2011; Akl et al.

2013; Akl et al. 2015; Lavik et al. 2015;

Greenberg et al. 2015).

Apart from Bcl-2, the closely related anti-

apoptotic Bcl-XL protein is also able to interact

with the IP3R, albeit not via its BH4 domain
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(White et al. 2005; Monaco et al. 2012). Bcl-XL,

through its hydrophobic cleft, binds the IP3R at

its C-terminal region (Eckenrode et al. 2010) by

targeting two BH3-domain-like sequences (Yang

et al. 2016). The binding between Bcl-XL and

the IP3R results in a reduction in ER [Ca2+],

increased Ca2+ oscillations in the cytosol and

protection against apoptosis by sensitising the

IP3R to low basal levels of IP3 (Li et al. 2007).

Bcl-XL does not only alter Ca2+ signalling in

the cell via direct modulation of the IP3R, but

also via a nuclear factor of activated T-cells

(NFAT)-dependent pathway, which modifies

IP3R expression levels (Li et al. 2007). Further-

more, Mcl-1, another Bcl-2-protein family mem-

ber, was shown to interact directly with the IP3R

via the last transmembrane domain in its

C-terminal tail (Eckenrode et al. 2010). Like

Bcl-XL, Mcl-1 was found to sensitise the IP3R,

thereby increasing the frequency of Ca2+

oscillations in the cell and the number of

oscillating cells (Eckenrode et al. 2010). Fig-

ure 17.2 displays the proteins that regulate

ER-mitochondrial Ca2+ signalling via the IP3R

and VDAC1. For reasons of clarity, a distinction

was made between the regulation of pro-survival

and pro-apoptotic Ca2+ signalling.

Finally, inhibition of Bcl-2-family members

has emerged as an attractive anticancer strategy,

particularly by preventing the complex formation

between the anti- and pro-apoptotic Bcl-2-family

members (Davids and Letai 2012). However, the

function of anti-apoptotic Bcl-2-family members

appears to be involved in ER-mitochondrial con-

tact sites as well. Indeed, recent studies showed

that targeting the hydrophobic cleft using BH3

mimetics like ABT-737, a non-selective Bcl-2/

Bcl-XL inhibitor, enhance anticancer treatments

by increasing ER-mitochondria contact sites and

stimulating ER-mitochondrial Ca2+ transfer (Fan

et al. 2015; Xie et al. 2016). As such, ABT-737

could restore the sensitivity of cisplatin-resistant

ovarian cancer cells to cisplatin treatment. This

correlated with the ability of cisplatin to induce

mitochondrial Ca2+ overload, an important fea-

ture of the successful induction of cell death by

anticancer treatments (Bittremieux and Bultynck

2015; Bonora et al. 2015; Fan et al. 2015; Giorgi

et al. 2015a; Xie et al. 2016).

17.3.2.2 VDAC1
As VDAC1 is the gateway for Ca2+ entry in the

mitochondria, this protein’s function may also be

influenced in cancer cells to ensure their survival.

Bcl-XL was found to bind to and block VDAC1

with its BH4 domain, thereby inhibiting Ca2+-

mediated apoptosis (Monaco et al. 2015).

Intriguingly, cytosolic Ca2+ levels impact

VDAC1 expression levels (Weisthal et al.

2014). An increase in cytosolic [Ca2+], elicited

by, for example, H2O2, induces a rise in VDAC1

expression, which at the same time correlates

with the ability to form oligomers in the OMM,

through which the pro-apoptotic protein cyto-

chrome c is released from the mitochondria

(Weisthal et al. 2014).

VDAC1 does not only contribute to Ca2+-

mediated apoptotic cell death, but also influences

apoptosis occurring independently of Ca2+. For

instance, in human glioma cells subjected to

hypoxia, VDAC1 has been implicated in the

activation of mitophagy (Qiao et al. 2016). In

these cells, the mitochondrial deacetylase

sirtuin-3 (Sirt3) stimulates the association

between VDAC1 and parkin, an E3 ubiquitin

ligase, stimulating mitophagy (Qiao et al. 2016;

Bernardini et al. 2017). Consequently, knock-

down of Sirt3 inhibited mitophagy, rendering

the cells prone to apoptotic cell death (Qiao

et al. 2016). Thus, VDAC1 in concert with Sirt3

plays a role in protecting cancer cells through

mitophagy. Interestingly, parkin also seems to

play a role in the regulation of mitochondrial

homeostasis and energy metabolism (Calı̀ et al.

2013). Overexpression of parkin in HeLa and

SH-SY5Y neuroblastoma cells increased physi-

cal as well as functional interactions between the

ER and the mitochondria, whereas parkin silenc-

ing caused mitochondrial fragmentation and

compromised mitochondrial Ca2+ transients due

to reduced ER-mitochondria tethering (Calı̀ et al.

2013).
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Furthermore, VDAC1 provides a link between

apoptosis and differentiation of cancer cells. In

glioblastoma tumour cells, in which VDAC1

expression was silenced, a shift from

pro-apoptotic proteins linked to cell prolifera-

tion, including avian myelocytomatosis virus

oncogene cellular homolog (c-Myc) and nuclear

factor κB (NF-κB), to pro-apoptotic proteins

regulating cell differentiation, including p53,

was observed (Arif et al. 2016). This led to dif-

ferentiation of the glioblastoma cells into astro-

cyte- and neuron-like cells. Additionally, several

studies showed that hexokinase (HK), the

enzyme catalysing the first step of glycolysis

(Wilson 2003), bound to VDAC1, confers pro-

tection from apoptosis in HEK and HeLa cells

(Bryson et al. 2002). This protection is proposed

to result from the inhibition of the interaction

between VDAC1 and the pro-apoptotic Bcl-2

family member Bax by HK (Bryson et al.

2002). Interestingly, for HK to execute its anti-

apoptotic effect, its binding to VDAC1 is needed

(Arzoine et al. 2009; Abu-Hamad et al. 2009).

Furthermore, evidence also suggests that the

Bcl-2

Bcl-XL

PKB/Akt
PP2A

PML
PTEN

IP3R

VD
AC

1
M

CU

Mitochondrion

ERCa2+

OMM
IMM

IP3R

VD
AC

1
M

CU

Mitochondrion

ERCa2+

OMM
IMM

Bcl-2
Bcl-XL
Mcl-1

Mcl-1

Sig-1R

a b

Fig. 17.2 Regulation of pro-survival and
pro-apoptotic Ca2+ signalling at the MAMs. Arrow-
headed lines indicate a stimulatory interaction, while
bar-headed lines indicate an inhibitory interaction. (a)
Regulation of pro-survival Ca2+ signalling at the MAMs.

Bcl-2, Bcl-XL and Mcl-1 increase pro-survival Ca2+

oscillations and stimulate cell metabolism by interacting

with the C-terminus of the IP3R, which results in a

sensitisation of the channel to basal IP3 levels. Mcl-1

also enhances cell survival through binding to VDAC1,

thereby increasing its activity and thus mitochondrial Ca
2+ uptake. While these proteins directly impact the Ca2+-

flux properties of the IP3R or VDAC1, Sig-1R indirectly

promotes cell survival. Under conditions of ER stress,

Sig-1R becomes active and stabilises the IP3R, ensuring

the transmission of pro-survival Ca2+ signalling into the

mitochondria. (b) Regulation of pro-apoptotic Ca2+ sig-

nalling at the MAMs. Bcl-2 and Bcl-XL do not only

support pro-survival Ca2+ signalling, but also inhibit

pro-apoptotic Ca2+ signalling. Binding of Bcl-2 via its

BH4 domain to the central region of the IP3R diminishes

the Ca2+ flux through the IP3R, while Bcl-XL inhibits

VDAC1 via its BH4 domain that targets the N-terminus

of VDAC1. Ca2+ release from the ER is also decreased by

PKB/Akt, which inhibits IP3R function by phosphoryla-

tion. The phosphatase PTEN counteracts the function of

PKB/Akt at the MAMs by dephosphorylating the

IP3R. PML indirectly influences the phosphorylation

state of the IP3R by recruiting the phosphatase PP2A,

which negatively regulates PKB/Akt activity in the

MAMs and counteracts PKB/Akt-mediated phosphoryla-

tion of IP3R in the MAMs. Thus, PML alleviates the

suppression of IP3R-mediated Ca2+ flux from the ER to

the mitochondria imposed by PKB/Akt (For more details,

please see text)
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binding of HK to VDAC1 reduced mitochondrial

ROS generation (da-Silva et al. 2004; Sun et al.

2008). Since ROS production is often elevated in

cancer cells (Liou and Storz 2010; Panieri and

Santoro 2016), this may be another mechanism

by which HK protects tumour cells against cell

death, as both the HK-I and -II isoforms con-

veyed protection towards apoptosis-inducing

oxidants through their association with VDAC1

(Bryson et al. 2002; Ahmad et al. 2002).

17.3.2.3 The Chaperones
Also the chaperone proteins at the MAMs are

able to modify the cell’s apoptotic pathways.

Similar to VDAC1, Sig-1R acts in a Ca2+-depen-

dent and Ca2+-independent way. Apoptotic Ca2+

signalling is impacted by Sig-1R’s ability to bind

to the IP3R. Knockdown of Sig-1R resulted in

increased degradation of the IP3R3 via the

proteasome, suggesting that it has a stabilising

function (Hayashi and Su 2007). Furthermore, in

conditions of physiologically normal ER [Ca2+],

Sig-1R is in a resting state, bound to GRP78

(Hayashi and Su 2007). However, under

conditions of depletion of the ER Ca2+ stores,

the Sig-1R/GRP78 complex is disrupted, and

Sig-1R obtains its chaperone activity (Hayashi

and Su 2007). It targets the IP3R to ensure that

IP3-mediated pro-survival Ca2+ signalling to the

mitochondria occurs properly. Interestingly,

while during short periods of ER Ca2+ depletion,

Sig-1R remains localised at the MAMs it is

redistributed throughout the ER upon longer ER

Ca2+ depletion, again as a pro-survival mecha-

nism under continued ER stress, which is often

present in cancer cells (Hayashi and Su 2007).

By stabilising the IP3R, it sustains pro-survival

Ca2+ signalling during ER stress. Alternatively, it

was reported that Sig-1R supports cell survival

during ER stress via another client protein: IRE1

(Mori et al. 2013). Activation of IRE1 triggers its

endonuclease activity, needed for splicing X-box

binding protein-1 (XBP1) mRNA. This tran-

scription factor then promotes the transcription

of various ER chaperones (Yoshida et al. 2001).

It is thought that Sig-1R’s stabilisation of IRE1

contributes to prolonged signalling along the

IRE1-XBP1 axis, thereby supporting cell

survival under conditions of augmented and

prolonged ER stress (Mori et al. 2013).

GRP75, on the other hand, impacts apoptosis

in cancer cells primarily through its alteration of

MAPK/ERK signalling and influence on p53. In

medullary thyroid carcinoma cells, apoptosis and

inhibition of cell growth were caused by a deple-

tion of GRP75 (Starenki et al. 2015).

Investigations into the pathways involved

revealed that a temporary activation of MAPK/

ERK signalling was responsible for the growth

arrest, while apoptosis was induced through

mitochondrial dysfunction. This consisted of

loss of the mitochondrial membrane potential,

lowered oxygen consumption and an elevation

of ROS levels. Furthermore, it was shown that

these mitochondrial effects were linked to a

decrease in Bcl-2 expression (Starenki et al.

2015). Similar results in different cancer cell

lines confirmed GRP75 as a negative regulator

of MAPK/ERK signalling (Wu et al. 2013). An

additional contribution to the anti-apoptotic

function of GRP75 is its capacity to bind the

tumour suppressor p53 (Wadhwa et al. 1998;

Kaul et al. 2001; Wadhwa et al. 2002b). The

interaction prevents nuclear translocation of

p53, abrogating its function as a transcription

factor (Wadhwa et al. 2002b). Moreover,

keeping p53 in the cytoplasm speeds up its

proteasomal degradation (Kaul et al. 2005).

Strikingly, applying the HSP90 inhibitor

17-AAG, which blocks other heat shock proteins

but not GRP75, stimulated GRP75 expression

and reinforced its binding to p53, weakening

the effect of the HSP90 inhibitor in hepatocellu-

lar carcinoma (Guo et al. 2014).

Also calnexin has been implicated in the reg-

ulation of apoptotic cell death. However, it seems

that calnexin may play an anti-apoptotic as well

as a pro-apoptotic role dependently on the

circumstances. Caspase-3 and Caspase-7 have

both been shown to cleave calnexin in vitro,

while overexpression of the cleavage product

partially inhibited apoptosis (Takizawa et al.

2004). Indirectly, calnexin also fulfils a

pro-apoptotic role: its cytosolic tail is able to

recruit caspase-8, which is responsible for the

cleavage of Bap31 (Breckenridge et al. 2002;
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Delom et al. 2007). Bap31’s cleaved form

stimulates Ca2+ release from the ER and apopto-

sis ensues (Breckenridge et al. 2003). In the

MCF-7 breast cancer cell line, which is resistant

to tunicamycin-induced cell death, calnexin is

able to sensitise the cells to tunicamycin, inde-

pendently of its chaperone function (Delom et al.

2007).

17.3.2.4 Proteins Defining MAM
Structure

In MCF-7 cells, Mfn2 mediated apoptosis via the

phosphoinositide 3-kinase (PI3K)/PKB/Akt sig-

nalling pathway (Ma et al. 2015). These results

mimic the findings in vascular smooth muscle

cells. There, Mfn2 was shown to trigger mito-

chondrial apoptosis by inhibiting the GTPase

Ras, resulting in decreased PKB/Akt signalling

along the Ras-PI3K-PKB/Akt axis (Guo et al.

2007). However, it was not established whether

lowered PKB/Akt signalling was linked to an

increased Ca2+ signalling through reduced phos-

phorylation of the IP3R. In this regard, it is inter-

esting to note that Wang et al. (2015) found that

overexpression of Mfn2 induced Ca2+-dependent

apoptosis in hepatocellular carcinoma.

Additionally, several studies have linked

PACS-2 with the apoptotic process, both via the

intrinsic pathway as through the extrinsic one.

For example, PACS-2 has been shown to interact

with the Bcl-2-family protein Bid (Simmen et al.

2005): upon the addition of apoptotic stimuli,

PACS-2 is responsible for the translocation of

Bid to the mitochondria, where cytochrome c

release and caspase activation ensue (Simmen

et al. 2005). Furthermore, PACS-2 is involved

in tumour necrosis factor-related apoptosis

inducing ligand (TRAIL)-triggered apoptosis,

more specifically in lysosomal permeabilisation

(Werneburg et al. 2012). PACS-2 recruits Bim

and Bax, two other members of the Bcl-2 family,

to the lysosomal membrane to bring about

cathepsin B release and subsequent apoptosis

(Werneburg et al. 2012). On this note, it is inter-

esting that cellular inhibitor of apoptosis protein-

1 and -2 (cIAP-1/cIAP-2) repress expression

levels of PACS-2 by promoting its ubiquiti-

nylation (Guicciardi et al. 2014). In this way,

these cIAPs confer resistance to TRAIL-induced

apoptosis in hepatobiliary cancer cell lines

(Guicciardi et al. 2014). Curiously, PKB/Akt-

mediated phosphorylation of Ser437 serves as a

switch to shift from PACS-2’s trafficking func-

tion to its function as a promoter of apoptosis

(Aslan et al. 2009). When phosphorylated,

PACS-2 is bound to the 14-3-3 scaffold protein,

which inhibits its role in apoptosis (Aslan et al.

2009), in a similar way as the Bcl-2-protein fam-

ily Bad (Zha et al. 1996). Interestingly, phos-

phorylation of PACS-2 does not merely serve to

repress apoptosis, but is also required for

polycystin-2 localisation to the ER (Aslan et al.

2009).

Apart from engaging Bcl-2-protein family

members, PACS-2 also influences the regulation

of p53. Sirt1 deacetylates p53, but upon DNA

damage, PACS-2 is shuttled to the nucleus,

where it interacts with Sirt1, preventing the

deacetylation of p53 and inducing

p21-dependent cell-cycle arrest (Atkins et al.

2014). Contrasting with its pro-apoptotic func-

tion, however, a recent study has found that

PACS-2 was necessary for NF-κB-dependent
Bcl-XL induction in response to DNA damage

(Barroso-González et al. 2016).

Lastly, PERK has been shown to play a role in

the survival of c-Myc-dependent cancer cells via

its involvement in autophagy (Hart et al. 2012).

As an oncogene, c-Myc regulates ribosome

expression and biogenesis, increasing protein syn-

thesis (van Riggelen et al. 2010). This increased

synthesis load is accompanied by elevated PERK

activity, which promotes autophagy as a survival

mechanism through the upregulation of unc-51-

like kinase 1 and ATG5 (Hart et al. 2012). This is

underpinned by the observation that upon loss of

PERK in these cancer cells, the balance tips from

survival to apoptosis due to decreased autophagy

(Hart et al. 2012).

Furthermore, PERK seems to play an impor-

tant role in tumour cell survival under hypoxic

conditions. Hypoxia was shown to trigger PERK

signalling in xenograft models, while a

dominant-negative PERK or eIF2α was linked

with an increase in apoptotic cells in hypoxic

regions of the tumour (Bi et al. 2005). Delving
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into the molecular mechanisms responsible for

this protection against hypoxia, an increase in

ATG5 expression was found, indicating that the

induction of autophagy provides the protection

for tumour cells (Kouroku et al. 2007; Rouschop

et al. 2010).

Recently, the CTA FATE1 has been discov-

ered at the MAMs, where it controls

ER-mitochondrial distance (Doghman-

Bouguerra et al. 2016). In fact, FATE1 functions

as an anti-tether: it diminishes ER-mitochondrial

contact sites and decreases mitochondrial Ca2+

uptake. Hence, it regulates the sensitivity

towards pro-apoptotic stimuli that elicit apopto-

sis via Ca2+ signalling (Doghman-Bouguerra

et al. 2016). Another anti-apoptotic function of

FATE1 is its role in the prevention of accumula-

tion of Bik, a pro-apoptotic Bcl-2-protein family

member (Maxfield et al. 2015). The underlying

molecular mechanism consists of the recruitment

of the E3 ligase RNF183 by FATE1 and

subsequent stimulation of Bik degradation

(Maxfield et al. 2015), allowing cells to survive

even in the presence of apoptotic stimuli.

17.3.3 Cellular Energetics
and Biochemical Pathways

17.3.3.1 The IP3R
Ca2+ plays an important role in controlling mito-

chondrial bioenergetics, since it stimulates ATP

production and mitochondrial respiration as the

α-ketoglutarate, isocitrate and pyruvate

dehydrogenases are Ca2+-dependent rate-

limiting enzymes of the TCA (Cárdenas et al.

2010; Kaufman and Malhotra 2014). These

dehydrogenases are inhibited in the absence of

constitutive low-level Ca2+ transfer from ER to

mitochondria, which turns on AMP-activated

kinase (AMPK). This results in an increase in

basal autophagic flux that is independent of

mTOR (Cárdenas et al. 2010; Cárdenas and

Foskett 2012). The pro-survival low-level IP3R-

mediated Ca2+ signalling can be modified by the

activity of several anti-apoptotic Bcl-2-family

proteins, which are often upregulated in cancer

(Bittremieux et al. 2016). Bcl-2, Bcl-XL as well

as Mcl-1 have been reported to interact with

IP3Rs (White et al. 2005; Li et al. 2007;

Eckenrode et al. 2010). The anti-apoptotic

proteins target the C-terminal region of the

IP3R (a.a. 2570-2749) (White et al. 2005),

resulting in a sensitisation of the IP3Rs to basal

IP3 levels, thereby enhancing IP3R-dependent

Ca2+ oscillations and stimulating mitochondrial

bioenergetics. Bcl-XL is also present in the

MAMs, targeting and stimulating IP3Rs and

driving mitochondrial metabolism (Williams

et al. 2016). Bcl-XL is recruited to the MAMs

during non-apoptotic ER stress induction,

augmenting mitochondrial bioenergetics through

interaction with IP3Rs. IP3R sensitisation by

Bcl-XL occurs via its hydrophobic cleft, which

binds two BH3-like domains in the C-terminus of

IP3Rs, although the BH4 domain of Bcl-XL also

contributes by targeting the central, modulatory

domain of the IP3R (Yang et al. 2016; Williams

et al. 2016). Therefore, BH3 mimetic drugs that

target Bcl-XL may also antagonise Bcl-XL’s

ability to sensitise IP3Rs and thus may suppress

Ca2+-driven mitochondrial metabolism. This is

very important, since cancer cells are particularly

addicted to these basal Ca2+-signalling events to

sustain adequate TCA cycling (Cárdenas et al.

2016; Bultynck 2016). This process provides

mitochondrial substrates, like nucleosides, that

are essential for proper cell-cycle progression

and cell division. In the absence of these Ca2+

fluxes, non-tumorigenic cells tune down their

cell cycle, while tumorigenic cells progress

through the cell cycle irrespective of their ener-

getic state, resulting in a mitotic catastrophe

(Cárdenas et al. 2016; Bultynck 2016).

As described above, the phosphorylation state

of the IP3R has a determining role in its Ca2+-

release properties, and PML is able to alter this

phosphorylation state. Recently, it has been dis-

covered that MAM-localised PML inhibits

autophagy via the control of ER-mitochondrial

Ca2+ signalling (Missiroli et al. 2016). By

stimulating ER-mitochondrial Ca2+ flux, the

cell’s metabolism is being stimulated (Cárdenas

et al. 2010; Kaufman and Malhotra 2014). p53 is

acting as a molecular bridge to keep PML at its

place in the MAMs (Missiroli et al. 2016). Upon

17 Alterations in Ca2+ Signalling via ER-Mitochondria Contact Site Remodelling in Cancer 241



PML loss, however, metabolic stimulation via

Ca2+ is not present anymore, and this turns on

AMPK signalling and subsequent autophagy

(Missiroli et al. 2016). Additionally, also

mTORC2 may control metabolism via IP3R3

phosphorylation, in a similar way it contributes

to MAM integrity via PACS-2 phosphorylation

(Betz et al. 2013). Activation of PKB/Akt in an

mTORC2-dependent manner reduces IP3R-

mediated Ca2+ signalling and hence might

impact the rate of oxidative phosphorylation

(Betz et al. 2013).

17.3.3.2 VDAC1
As a gateway connecting the mitochondria to

their environment, VDAC1 is not only a regula-

tor of apoptosis: its localisation at the OMM of

the mitochondrion also allows for regulation of

cellular bioenergetics. For a start, it has been

reported that the Ca2+-flux properties of

VDAC1 are stimulated by Mcl-1, which binds

with high affinity to the anion channel in the

OMM (Huang et al. 2014). This results in an

increased mitochondrial Ca2+ uptake, thereby

promoting ATP production and stimulating cell

survival, as described above (Huang et al. 2014).

Furthermore, VDAC1 is thought to play a

major role in constituting the Warburg effect

through its interaction with HK (Bustamante

and Pedersen 1977; Azoulay-Zohar et al. 2004;

Pedersen 2008). A common characteristic of can-

cer cells is that they show high levels of glycoly-

sis, even though they are oxygenated (Vander

Heiden et al. 2009; Liberti and Locasale 2016).

This aerobic glycolysis is commonly referred to

as the Warburg effect (Vander Heiden et al.

2009; Liberti and Locasale 2016). It is proposed

that, by binding VDAC1, ATP produced by oxi-

dative phosphorylation is readily accessible for

HK-I and -II to fuel the conversion of glucose to

glucose-6-phosphate (G-6-P) (Pedersen 2008).

This provides a functional coupling of glycolysis

with the TCA. Interestingly, evidence suggests

that HK is less sensitive to product inhibition by

G-6-P through its interaction with VDAC1

(Bustamante and Pedersen 1977; Azoulay-

Zohar et al. 2004). Another clue to VDAC1’s

role in the Warburg effect is that especially the

VDAC1-bound isoforms, HK-I and HK-II were

found to show higher expression levels in several

types of cancer, e.g. lymphoma, prostate and

breast cancer (Pedersen 2008). Recently,

mTORC2 was found to impact the binding of

HK-II to VDAC1, again through PKB/Akt-

dependent phosphorylation of HK-II, which

stabilises its binding to VDAC1 (Betz et al.

2013).

The Warburg effect also comprises the sup-

pression of oxidative phosphorylation in the

mitochondria (Zheng 2012; Lu et al. 2015). A

long unidentified player in this suppression is

dimeric tubulin (Rostovtseva et al. 2008).

Dimeric tubulin at concentrations in the

nanomolar range was shown to reversibly block

VDAC reconstituted into planar phospholipid

membranes (Rostovtseva et al. 2008). Further-

more, this block of VDAC was demonstrated to

decrease oxygen consumption in isolated

mitochondria (Rostovtseva et al. 2008). In addi-

tion to this, it was shown that in HepG2 cells, an

increase in dimeric tubulin resulted in mitochon-

drial depolarisation, while a decrease in dimeric

tubulin was associated with mitochondrial

hyperpolarisation (Maldonado et al. 2010).

These results suggest that mitochondrial metabo-

lism in cancer cells is attenuated by the tubulin-

mediated blockage of VDAC (Maldonado et al.

2010). It is noteworthy that the effect of free

tubulin on cellular metabolism was not found in

primary hepatocytes: microtubule

depolymerisation decreased the mitochondrial

membrane potential, as in cancer cells, but induc-

ing polymerisation did not increase it

(Maldonado et al. 2010). This leaves the question

whether the observations concerning free tubulin

blocking VDAC are specific for cancer cells

(Maldonado et al. 2010; Rostovtseva and

Bezrukov 2012).

Apart from a shift towards aerobic glycolysis,

other biochemical pathways like cholestero-

logenesis may be altered in cancer cells. Also in

this process, a link to VDAC1 can be found: the

channel is part of the polyprotein complex called

the transduceosome, which is responsible for

import of cholesterol into the mitochondria

(McEnery et al. 1992; Liu et al. 2006; Rone
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et al. 2012). In this complex, VDAC1 is proposed

to interact with the translocator protein, anchor-

ing the transduceosome to the OMM and

facilitating the binding and import of the ste-

roidogenic acute regulatory protein (Hauet et al.

2005). It is proposed that HK bound to VDAC1

may influence the amount of cholesterol synthe-

sis and its import in mitochondria in cancer cells

(Campbell and Chan 2007), while at the same

time, the channel properties of VDAC1 itself

may be influenced by the augmented levels of

cholesterol in the OMM (Pastorino and Hoek

2008).

17.4 Conclusions

The MAMs and their various components,

including Ca2+-transport systems, chaperones

and structural components, establish an impor-

tant Ca2+-signalling domain between the ER, the

main intracellular Ca2+-storage organelle and the

mitochondria, the main organelle controlling cell

death and survival processes, including cellular

bioenergetics and autophagy, apoptosis sensitiv-

ity, growth and proliferation. Dysregulation of

these processes is a hallmark of cancer. Hence,

alterations and perturbations in the structural

organisation and functional properties of the

MAMs have emerged as an important nexus

that underlies oncogenesis, tumour growth and

metastasis and responses to chemotherapy.

Moreover, several oncogenes and tumour

suppressors are localised at the MAMs. Thus,

changes in MAMs can drive oncogenesis, while

cancer cells at a later stage could remodel MAMs

to favour tumour growth, proliferation and meta-

static behaviour.
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Chudej J, Dobrota D, Račay P (2015) Differential
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