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Mitochondria are known to participate in a wide vari-
ety of cellular processes. Because they are the site of 
respiration, mitochondria are central regulators of cel-
lular metabolism and participate in cell fate decisions. 
Mitochondria can activate the regulated cell death 
(RCD) pathways, especially those parts with apop-
totic or necrotic features1, and they are determinants 
of differentiation commitment or the stem cell pluri-
potent state2. Mitochondria also act as hubs for cellu-
lar signalling by actively mediating the flux of second 
messengers (for example, Ca2+ and cAMP)3,4, serving 
as targets of signalling pathways, and producing small 
messengers, including reactive oxygen species (ROS)5. 
Notably, the inner mitochondrial membrane (IMM) is 
an extremely tight barrier. Therefore, all signalling mol-
ecules and mediators generated inside the mitochon-
dria require a dedicated transporter to pass through the 
IMM. By contrast, the outer mitochondrial membrane 

(OMM), which envelopes the IMM, is more perme-
able to ions and small solutes via the activity of the 
voltage- dependent anion channel (VDAC), and special-
izes in selective protein diffusion to compartmentalize  
biochemical functions and signalling events6–8.

Upon accumulation of Ca2+ in the mitochondrial 
matrix, a transition in the properties of the IMM is trig-
gered, and it becomes permeable and poorly selective, 
allowing a variety of ions and solutes to be redistributed. 
This phenomenon is known as the mitochondrial per-
meability transition (mPT). This was originally believed 
to be an artefactual event, resulting from the degradation 
of the IMM, but we now know that mPT is mediated by 
a distinct entity with pore properties, the mitochondrial 
permeability transition pore (mPTP).

Opening of the mPTP can be reversed, which is 
regulated by the equilibrium between positive and 
negative modulators. However, the concentrations of 
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still lacking. Recently, the resolution of the F1Fo ATP synthase structure by cryogenic electron 
microscopy led to a model for mPTP gating. The elusive molecular nature of the mPTP is now 
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these modulators vary according to different cellular 
conditions, setting the threshold at which mPT events 
become irreversible (Table 1). The mPT is important in 
the function of pathways that converge on and emerge 
from mitochondria, and has been implicated in many 
cellular events. Additionally, as a result of the discovery 
of its prototypical inhibitor, cyclosporine a (CsA)9–13, we 
now know that mPT is involved in both the regulation 
of physiological cellular processes and the emergence of 
pathological conditions14.

Here, we review knowledge of the mammalian mPTP, 
focusing on the current model for its molecular compo-
sition, its involvement in cellular pathophysiology and 
the available pharmacological toolbox for modulating its 
activity. Additionally, we discuss major flaws in the cur-
rent model and uncertainties related to this intriguing 
mitochondrial phenomenon.

mPTP activation and modulation
The properties of mPT support the existence of one 
or a group of proteins responsible for the formation 
of the mPTP, although its molecular nature is still 
not fully understood. Many molecular components 
have been proposed, including the adenine nucleotide  
translocator (ANT), VDACs and mitochondrial inorganic  
phosphate carrier (PiC), although recent evidence has 
shown that models based solely on these components 
are improbable (box 1).

Molecular nature of the mPTP. In the past decade, 
attention has been focused on mitochondrial F1/Fo ATP 
synthase (hereafter referred to as ‘ATP synthase’), the 
enzymatic complex responsible for the synthesis of ATP 
from ADP and inorganic phosphate (Pi) in the IMM. 
ATP synthase is a multiprotein complex that consists of 
two well- defined regions: the soluble portion F1, located 
in the mitochondrial matrix, including a catalytic part 
(the α–β trimer) and a regulative part (oligomycin 
sensitivity- conferring protein (OSCP)); the Fo portion 
straddles the IMM and includes the c- ring domain and 
the e, f and g subunits15 (Fig. 1a).

The involvement of ATP synthase in mPTP forma-
tion is mostly based on three lines of evidence. First, 
isolated ATP synthase (or its c- ring domain), recon-
stituted in artificial bilayers, generates Ca2+- inducible 
high- conductance currents16–19. Second, genetic manip-
ulation of ATP synthase subunits in living cells markedly 
affects mPT16,20–23. Third, the mutagenesis of some ATP 
synthase subunits affects the dependence of the mPTP 
on some of its regulators16,21,24–27.

From the data on mPT obtained thus far, the most 
accurate model foresees that the mPTP can open with 
a different configuration, each conferring a discrete 
set of conductances on the IMM, a phenomenon gen-
erally referred to as the ‘multiconductance property’ of 
the mPTP28,29. It is plausible to hypothesize that mPT 
is induced by two different types of pores (reasonably 
of different size), through which two types of currents 
pass: one at low conductance, with an approximate 
amplitude of 0.3–0.7 nS that allows the redistribution of 
ions (that is, protons, Ca2+ and K+) and small metabolites 
(for example, glutathione), which is involved mainly in 

mitochondrial changes under physiological conditions; 
and a second, at high conductance, with an amplitude of  
approximately 1.5 nS that, by permitting the passage  
of larger solutes (for example, sucrose)22,30,31, has a greater 
impact on mitochondrial structure and function, ulti-
mately leading to RCD. Both mPTP opening events are 
reversible9,29,32.

While the high- conductance state of the mPTP is 
induced by extremely stressful situations that over-
whelm the mitochondria, a low- conductance state 
occurs spontaneously during the normal physiological 
activity of mitochondria (for example, in excitable cells 
it is triggered by physiological Ca2+ accumulation inside 
the mitochondria). This spontaneous phenomenon 
involves an mPTP switch between an on state and an off 
state, called ‘flickering’33–35. Flickering events are possible 
because as quickly as the low- conductance permeability 
is triggered, the mPTP can be swiftly turned off due to 
a redistribution of ions between mitochondria and the 
cytoplasm. Indeed, the low- conductance pores gener-
ated across the IMM allow extrusion into the cytosol of 
Ca2+, the permissive activator of the mPTP (with both 
the low- conductance pore and the high- conductance 
pore)36, and the entry of H+ ions from the cytosol into 
the mitochondria, which, by lowering the mitochondrial 
matrix pH, favours pore closure.

ANT is now considered the most likely candidate 
for the generation of the low- conductance pore31,37,38, 
while the full- conductance currents are instead attrib-
uted to a pore originating within ATP synthase (as dis-
cussed above). Although it is reasonable that these two 
mPTP types of pores are closely related, because ATP 
synthase and ANT interact in the so- called ATP synth-
asome, whether this interaction is involved in the mech-
anism of pore formation or in the determination of the  
conductance state is still unknown (Fig. 1b).

Mechanism and controversies of Ca2+- induced pore for-
mation. The mechanism of pore formation within ATP 
synthase remains the most debated point in the research 
on mPT. It was recently demonstrated that Ca2+ binds 
to a site located in the soluble, F1 portion (close to the 
Mg2+- binding site between α- and β- subunits) of ATP 
synthase to trigger mPTP opening25,36,39,40, while no bind-
ing site has been reported for the c- ring domain, which 
is envisioned in one of the existing models to function 
as the pore- establishing unit of the mPTP (see later). In 
contrast to Ca2+, other divalent cations, especially Mg2+, 
Sr2+, Mn2+ and Ba2+, are strong mPT inhibitors. While 
inhibition by Sr2+, Mn2+ and Ba2+ has been proposed to 
occur by obstructing the Ca2+ influx inside mitochon-
dria, Mg2+ works via competitive inhibition at the same 
site as Ca2+ (reFs9–11).

ATP synthase is organized mostly in rows of dimers 
that shape the IMM in cristae. Evidence indicates that 
mPTP formation starts at the sites populated by ATP 
synthase dimers but requires their disassembly for suc-
cessful opening21. Two working models of pore forma-
tion are currently proposed: one based on the ‘dimer 
hypothesis’ and the other based on the ‘c- ring hypothe-
sis’, which is also called the ‘death finger model’. The first 
hypothesis states that Ca2+- induced reconfiguration of 

Voltage- dependent anion 
channel
(VDaC). a pore- forming protein 
of the outer mitochondrial 
membrane which allows the 
exchange of metabolites and 
ions.

Cyclosporine A
(Csa). a cyclic polypeptide 
able to bind and inhibit 
cyclophilins, including the 
mitochondrial permeability 
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Adenine nucleotide 
translocator
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Mitochondrial inorganic 
phosphate carrier
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rotor (composed of an octamer 
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Table 1 | activators and inhibitors of the mammalian mPTP

Molecule mPTP 
regulation

Proposed target efficacy in mouse model of human 
disease

refs

Endogenous regulators

ADP Negative ANT; ATP synthase NA 9–11,17,31,37

AMP Negative Unknown (possibly the same for ADP) NA 9–11,17,31

ATP Negative Unknown (possibly the same for ADP) NA 9–11,17,31

Creatinea Negative mCK NA 240

H+ Negative His112 on OSCP NA 26

Mg2+ Negative It competes with Ca2+ at its regulatory  
binding site

NA 9,25

Ca2+ Positive Two different binding sites for the regulation of 
mPT were predicted: one is demonstrated on 
β- subunit of ATP synthase; the second remains 
unknown

NA 9,25

Fatty acids Positive Unknown NA 61–63

Pi Positive Unknown NA 56–58, 

241,242

ROS Positive Two distinct targets were proposed: one is 
dependent on pyrimidine oxidation and  
is unknown; another is dependent on thiol 
oxidation, and both GSH and CypD have been 
proposed

NA 51–53,55

Pharmacological regulators

1,3,8- Triazaspiro[4.5]
decane- derivative, 
compound 10

Negative ATP synthase subunit c Ex vivo model of ischaemia–
reperfusion injury (Langhendorff heart 
perfusion)

174

Isoxazole- derivative, 
compound 63 (PubChem  
CID 75204518)

Negative Unknown, probably not CypD Ex vivo model of ischaemia–
reperfusion injury (Langhendorff heart 
perfusion)

173

Bz-423 (PubChem  
CID 644335)

Positive ATP synthase subunit OSCP Mouse model of hereditary spastic 
paraplegia type 7 (Spg7-knockout mice)

17,243

Urea- base cyclophilin 
inhibitor, compound 19 
(PubChem CID 72771088)

Negative CypD NA 244

Small molecule cyclophilin 
inhibitor, compound 31 
(PubChem CID 90306602)

Negative CypD In vivo model of hepatic ischaemia–
reperfusion injury

171

4- Aminobenzenesulfonamide 
derivative, C-9

Negative CypD NA 206

CsA (PubChem  
CID 5284373)b

Negative Tryptophan residue (Trp121) of CypD In vivo model of cardiac ischaemia–
reperfusion injury

In vivo model of acetaminophen- 
induced liver injury

In vivo model of brain ischaemia–
reperfusion injury (middle cerebral 
artery occlusion)

In vivo model of oxalate- induced acute 
kidney injury

Model of myopathy related to collagen 
VI deficiency

152,177,235, 

245–247

Debio 025 (PubChem  
CID 11513676)

Negative CypD In vivo model of cardiac ischaemia–
reperfusion injury

Model of myopathy related to collagen 
VI and collagen VII deficiency

Model for Duchenne muscular 
dystrophy (mdx mouse)

170,248–251

Dexpramipexole (PubChem 
CID 59868)

Negative ATP synthase β- subunit and subunit OSCP NA 252
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the dimer causes the formation of a pore at the inter-
face of two ATP synthase monomers (Fig. 1c). The second  
hypothesis proposes that the conformational change 
induced by Ca2+ allows the c- ring to generate the 
pore (Fig. 1c).

Different studies provided criticisms of both these 
models, raising doubts about their validity. Genetic dele-
tion of ATP synthase subunits that impede the formation 
of the c- ring or the peripheral stalk (the portion respon-
sible also for the formation of dimers; Fig. 1a) did not 
block the formation of Ca2+- sensitive and CsA- sensitive 
non- selective pores in the IMM41,42. Lately, it was demon-
strated that ion currents observed in mitochondria in 
cells in which subunit c (the building block of the c- ring) 
has been knocked out are characterized by significantly 
lower amplitude than the high- conductance state of 
the mPTP31. These low- amplitude currents are now 
proposed to be formed by ANT as they are sensitive 
to the ANT antagonists and since ANT was originally 
reported to generate low- conductance currents in artifi-
cial membranes. In agreement, genetic deletion of ANT 
isoforms, mitochondrial matrix protein cyclophilin D 
(CypD; an essential component of the mPTP)37 and ATP 
synthase subunit g38 has now strengthened the model 
that ANT and ATP synthase might be independent 

pores responsible for low and high mPTP conductance, 
respectively.

The resolution of the bovine dimeric ATP synthase 
and mathematical modelling of its behaviour indicated 
that the c- ring lumen is enriched in hydrophobic res-
idues and its core is occupied by a lipid plug (Fig. 1a); 
this dense structure is held in place by a fragment of 
subunit e, and would act as a plug filling the cavity of the  
c- ring, thus making it difficult to envision the role of  
the c- ring in the establishment of the pore15,43. The death 
finger mode of pore opening at the c- ring originally pro-
posed that significant rearrangements of the ATP syn-
thase structure might lead to the expulsion of this dense 
c- ring core and rearrangement of the residues exposed 
in the c- ring lumen, leading to the formation of a pore 
permeable to solutes44. In support of this model, the 
resolution of the mammalian ATP synthase structure 
by cryogenic electron microscopy revealed, in the pres-
ence of Ca2+, the formation of aberrant ATP synthase 
displaying a shift of subunit e and an exposed c- ring, 
apparently deprived of the lipid plug. Cryogenic electron 
microscopy data also indicate that the c- ring appears 
enlarged, although the mechanism by which the hydro-
phobic lumen becomes hydrophilic remains an open 
question. As subunit e and subunit g are required for the 

Molecule mPTP 
regulation

Proposed target efficacy in mouse model of human 
disease

refs

Pharmacological regulators (cont.)

Gamitrinibs Positive HSP90 Orthotopic model of bone metastatic 
prostate cancer

253

GNX-4728 Negative Unknown, possibly ANT Transgenic model of amyotrophic 
lateral sclerosis (expressing human 
SOD1G37R)

205

GNX-4975 Negative Unknown, possibly ANT NA 254

JW47 Negative CypD In vivo model of experimental multiple 
sclerosis

255

ML-404 Negative Unknown, probably not CypD NA 256

NIM-811 (PubChem  
CID 6473876)

Negative CypD In vivo model of skeletal muscle 
ischaemia–reperfusion injury

In vivo bone fracture model

In vivo model of kidney ischaemia–
reperfusion injury

In vivo model of brain ischaemia–
reperfusion injury (transient focal 
cerebral ischaemia)

In vivo model of experimental multiple 
sclerosis

169,257–260

Sanglifehrin A (PubChem 
CID 5388925)b

Negative CypD In vivo model of cardiac ischaemia–
reperfusion injury

261

SB216763 (PubChem  
CID 176158)

Negative GSK3β Ex vivo model of ischaemia–
reperfusion injury (Langhendorff heart 
perfusion)

262

TR002 Negative Unknown, probably not CypD NA 173

VDAC1- based peptides Positive HKII Xenograft model of glioblastoma 263

ANT, adenine nucleotide transporter; CsA, cyclosporine A; CypD, cyclophilin D; GSH, reduced glutathione; GSK3β, glycogen synthase kinase 3β; HKII, hexokinase II; 
mCK, mitochondrial creatine kinase; mPT, mitochondrial permeability transition; mPTP, mitochondrial permeability transition pore; NA, not available; OSCP, 
oligomycin sensitivity- conferring protein; Pi, inorganic phosphate; ROS, reactive oxygen species; VDAC1, voltage- dependent anion- selective channel protein 1. 
aInhibition of mPT by creatine was reported in transgenic mice overexpressing mCK, but not in wild- type mice. bDisplays significant affinity for other cyclophilins 
(for example, cyclophilin A).

Cyclophilin D
(CypD). a peptidyl- prolyl 
cis–trans isomerase located  
in the mitochondrial matrix.  
by binding to mitochondrial 
aTP synthase, it functions as  
a positive regulator of 
mitochondrial permeability 
transition pore (mPTP) opening 
and the target of the mPTP 
inhibitor cyclosporine a (Csa).

Table 1 (cont.) | activators and inhibitors of the mammalian mPTP

www.nature.com/nrm

R e v i e w s



0123456789();: 

dimerization of the ATP synthase and are proposed to be 
the site of pore formation, the reported rearrangement of  
subunit e leaves open the possibility of the formation  
of a pore at the interface between dimers39.

The current emerging picture thus proposes that 
Ca2+ binding to ATP synthase causes a modification 
of the conformation of the complex, which allows the 
formation of the high- conductance polar pore within 
the Fo portion39, alongside ANT pores that are respon-
sible for the low- conductance state (Fig. 1b). Although 
controversies are still to be addressed, we now have a 
solid model of the mPTP, which can now serve to design 
novel and more specific experiments to obtain more 
accurate, biologically relevant mechanistic insights into  
permeabilization of the IMM.

Molecular modulation of mPTP function. While it is 
well established that mitochondrial Ca2+ is the trigger 
for mPTP opening, under physiological conditions, 
mitochondria can accumulate large amounts of Ca2+ 
without experiencing mPT. Indeed, different endog-
enous modulators of mPT can modify the thresh-
old for Ca2+ concentration required to trigger that  
event.

Adenine nucleotides are probably the most potent 
endogenous inhibitors of mPT. ADP, ATP and AMP 
(listed from strongest to weakest) all affect mPT by both 
decreasing the rate of permeability propagation and 
increasing the Ca2+ concentration required to trigger 
mPT10,45. The mechanism responsible for this inhibi-
tion is still not fully understood, although it is believed 

Box 1 | History of the mPTP: successes and failures in mPTP component discovery

the molecular nature of the mitochondrial permeability transition pore 
(mPtP) has been investigated extensively over the past 40 years (see the 
figure), and different models have been proposed. all of them inevitably 
have fallen short when challenged by genetic models.

the earliest search for the mPtP structure was based on adenine 
nucleotide transporter (aNt). two studies in the early 1990s 
demonstrated that aNt could be isolated in complexes with the outer 
mitochondrial membrane (OMM) channels voltage- dependent anion 
channel (vDaC) and translocator protein (tsPO)277 and that different 
benzodiazepines targeting tsPO were capable of inducing or inhibiting 
mitochondrial permeability transition (mPt)280. subsequently, aNt was 
found in complex with vDaC, hexokinase ii (HKii), mitochondrial creatine 
kinase (mCK) and cyclophilin D (CypD), and when reconstituted in 
liposomes, it facilitated permeability to solutes or currents with 
properties resembling those of the mPt281,282. an initial model was then 
established, depicting the mPtP as a complex formed at contact sites 
between the inner mitochondrial membrane (iMM) and the OMM, with 
vDaC and aNt forming channels in the two membranes and tsPO, HKii, 
mCK and CypD involved in stabilizing and regulating the complex.

in 2004, the double- knockout mouse model for aNt isoforms 1 and  
2 revealed the persistence of Ca2+- inducible mPt (although with an 
increased threshold for Ca2+ induction and insensitivity to aDP or 
atractyloside), downgrading aNt from a pore- forming candidate to a 
regulator of the complex46. Genetic deletion of all vDaC isoforms and 
conditional knockout of TSPO clearly showed that the properties of the 
mPtP were unchanged by vDaC276 or tsPO283 deprivation, discrediting a 
model of the mPtP that had been used for a few decades. the exclusion  
of vDaC and tsPO from the mPtP complex started a new controversy. 
indeed, it was demonstrated that certain compounds targeted mPtP 
regulators on the OMM (possibly vDaC and tsPO), as demonstrated by 
the loss of their effect on mitoplasts. this problem has not been solved yet.

another model that received significant scrutiny was based on 
mitochondrial inorganic phosphate carrier (PiC), which was found  

to bind CypD and aNt and was able to generate Ca2+- induced currents284, 
leading to a model in which PiC, modulated by CypD, formed the pore in 
response to Ca2+ through interactions with aNt285. this model immediately 
raised some concerns, as the currents generated by the reconstituted  
PiC displayed a smaller amplitude than that reported for the mPtP. 
Furthermore, cardiac- specific deletion or overexpression of PiC did not 
affect mPt. it is now proposed that PiC might modulate mPtP opening  
by regulating the matrix levels of inorganic phosphate286.

a few years ago, small interfering rNa- based screening revealed spastic 
paraplegia type 7 protein (sPG7) as a novel component of the mPtP.  
its genetic inactivation increased resistance to Ca+- induced mPt in 
permeabilized cells, and sPG7 was found in a complex with CypD  
and vDaC268. independent investigators later failed to replicate the 
observation in isolated mitochondria287, and while a regulatory effect of 
sPG7 on the mPtP was confirmed in intact cells243, its mechanism appears 
to be related to the control of mitochondrial Ca2+ uptake269.

in the past decade, multiple lines of evidence have resulted in the 
proposal that the mPtP forms via a rearrangement of atP synthase. this 
model has been confirmed by independent laboratories, although there  
is still debate on the exact mechanism of pore formation31 (see the main 
text). recently, the generation of a mouse triple knockout for all the 
different aNt isoforms indicated that the transporter might represent  
an independent pore responsible for the low- conductance mPtP37. 
Nevertheless, considering that aNt and atP synthase exist in the same 
complex (atP synthasome, where PiC is also found), further investigations 
might provide novel and significant insights into the mechanism of mPtP 
formation.

a definitive resolution of the mPtP structure will allow the definition  
of those phenomena strictly related to the mPtP rather than other 
functions of mPtP components and regulators. the knockout mouse 
exemplifies this for CypD, which is already proposed to have phenotypes 
independent of mPtP activity, which should always be considered 
carefully288.
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to be mediated by ANT37,46 or the c- ring domain16. 
Acidification of the mitochondrial matrix also inhibits 
mPT, with the optimum pH for pore opening estimated 
to be 7.4 (reF.9) Inhibition of the mPTP by low pH is now 
recognized as being caused by the protonation of His112 
on the regulatory OSCP subunit of the ATP synthase 
complex26.

The mitochondrial membrane potential is another fac-
tor that modulates mPTP opening. Induction of mPT is 
possible in both de- energized and fully respiring mito-
chondria, although in the second case, mPT induc-
tion is significantly desensitized, which is due to the 
dependence of the mPTP on the membrane potential 
of the IMM. Physiological values of the mitochondrial 
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Fig. 1 | aTP synthase structure and mechanism of mPTP opening.  
a | Cartoon depicting the structure of ATP synthase. The central stalk 
contains the catalytic α3–β3 domain, the rotor (γ, δ and ε trimer) and the 
c- ring and is responsible for the rotatory conformational change that 
transduces the proton gradient across the inner mitochondrial membrane 
(IMM) for the catalysis of ATP synthesis. The peripheral stalk offers a 
reference system between the rotor and the catalytic portion of the central 
stalk and participates in dimer formation and in proton transport. The F1 
portion is composed mostly of a water- soluble subunit, while Fo is integral 
in the IMM. ATP synthase forms stable interaction with adenine nucleotide 
transporter (ANT) and inorganic phosphate carrier (PiC) in complexes 
named ‘ATP synthasomes’. The inset depicts a sectioned c- ring and displays 
a high- density structure observed by cryogenic electron microscopy.  
This structure (possibly composed of lipids) is in contact with subunit e  
and impedes any passage of solutes across the c- ring, thereby serving as  

a ‘plug’ for the channel formed by the ring structure. b | Models of 
high-conductance and low- conductance pore formation by ATP synthase 
and ANT. ANT and ATP synthase are believed to participates in 
low-conductance and high- conductance mitochondrial permeability  
transition pore (mPTP) currents, respectively, as independent channels.  
c | Models of high- conductance pore formation from ATP synthase.  
The binding of Ca2+ and cyclophilin D (CypD) to ATP synthase causes the 
deformation of the monomers and destabilization of its dimeric structure. 
At this point two possible explanations for the pore formation are 
proposed. The c- ring model proposes the deformation of subunit e causing 
the release of the lipid plug (see inset in panel a) from the c- ring, which 
becomes the pore. The dimer hypothesis proposes that the pore is formed 
at the interface between subunit g and subunit e of two interacting 
monomers. OSCP, oligomycin sensitivity- conferring protein; Pi, inorganic  
phosphate.

Mitochondrial membrane 
potential
The electric potential 
generated across inner 
mitochondrial membrane by 
the proton pumping activity  
of respiratory complexes.
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membrane potential keep the pore closed, while a reduc-
tion in mitochondrial membrane potential favours the 
transition to spontaneous induction of the mPT32,33,47. 
The existence of a designated voltage sensor of the 
mPTP was proposed long ago48,49 yet is still undeter-
mined, although one study proposed that it might reside 
in the c- ring domain16.

The best characterized positive modulator of the 
mPTP is the chaperone CypD50. This protein binds to 
the OSCP subunit, and it is proposed to favour a con-
formational rearrangement of ATP synthase, which ulti-
mately results in mPTP opening25. Accordingly, CypD is 
thought to be an important component of the mPTP. The 
gold- standard inhibitor of the mPTP, CsA, by binding 
CypD induces its detachment from ATP synthase, disfa-
vouring pore formation. By contrast, the benzodiazepine 
Bz-423, a novel proapoptotic drug for immunomodula-
tion in the treatment of lupus erythematosus, binds to 
OSCP, mimicking CypD and favouring mPTP opening17. 
Other important endogenous positive regulators of the 
mPTP include ROS, Pi and fatty acids. Oxidative stress 
is probably the most thoroughly described inducer 
due to its pathophysiological implications, and several 
pro- oxidants have been reported to favour Ca2+- induced 
mPTP opening51,52. The use of pyrimidine nucleotides 
and dithiols allowed the identification of two differ-
ent sites for redox modulations (called the ‘P site’ for 
pyridine nucleotides and the ‘S site’ for dithiols), both 
of which have been proposed to be distant from the 
Ca2+- triggering site53. Thiol- oxidizing agents have been 
shown to decrease the affinity of the mPTP for ADP, 
therefore repressing its inhibition potential and increas-
ing the binding affinity for CypD54. Initial observations 
addressed the impact of thiol oxidants on glutathione, 
but more recent observations proposed Cys141 of OSCP 
as one of these sites24,55. The mechanisms responsible for 
both Pi synergism and fatty acid synergism with Ca2+ 
to induce mPTP opening remain largely unclear55. 
Stimulation with Pi can induce ROS production together 
with mPT, and Pi- induced mPT is prevented by admin-
istration of the antioxidant catalase. Additionally, oxi-
dative stress potentiates mPT induced by Pi, suggesting 
that ROS, at least partially, are involved56–58. Multiple 
mechanisms have been proposed for fatty acids, involv-
ing the participation of ANT, VDAC, BAX (a member  
of the proapoptotic bCl-2 family), several kinases59–63 and  
the regulation of voltage- sensing mechanisms of the 
mPTP; however, indisputable evidence is still missing.

Regulation of mPTP by proteins and signalling networks. 
Although the molecular composition of the pore is still 
under investigation, several protein regulators of mPT 
have been identified that can either directly bind to mPTP 
components or drive post- translational modifications  
of mPTP or its regulators (Table 2).

In particular, a number of interactors and post- 
translational modifications of the CypD chaperone 
have been described to affect mPT. CypD appears to be 
involved in a network of chaperones controlling mPT. 
CypD was demonstrated to interact with the mitochon-
drial chaperonins HSP60 and HSP90 as well as DNAJ 
homologue subfamily C member 15 (DNAJC15). Both 

HSP60 and HSP90 antagonize CypD to confer protec-
tion against mPTP opening and cell death64,65. By con-
trast, the interaction of DNAJC15 with CypD positively 
regulates the mPTP66. Interestingly, HSP90 negatively 
regulates OSCP stability, suggesting that it could also 
modulate the interaction between CypD and OSCP67.

In vitro and in vivo, the sirtuin SIRT3 interacts with 
and deacetylates CypD at Lys166, increasing the thresh-
old for Ca2+- induced mPT (although in vivo the effect 
of SIRT3 on mPT appears to be more pronounced in 
aged mice than in young mice)68,69. In addition, SIRT3 
mediates pH- dependent deacetylation of Lys70 on the 
OSCP subunit, impairing its interaction with CypD70,71. 
Control of CypD- dependent mPT also depends on its 
phosphorylation status. A pool of GSK3β, a ubiquitously 
expressed serine/threonine kinase, has been proposed 
to localize to the mitochondrial matrix and phospho-
rylate CypD in response to erK- mediated signalling72, 
favouring its interaction with OSCP73 and sensitiz-
ing mPT-induced and Ca2+- induced cell death (see 
the section entitled Cellular consequences of mPTP  
opening)74–78. By contrast, activation of the PI3K path-
way resulted in activation of AKT2, which phospho-
rylated CypD at Ser31, potentially negatively affecting 
mPTP opening79.

Other kinases have been shown to suppress mPTP 
opening, especially mitochondrial creatine kinase 
(mCK), hexokinase II (HKII), protein kinase Cε (PKCε) 
and protein kinase A (PKA)80–84 (box 1). For all these 
kinases, the mechanism of action (including any phos-
phorylation sites in mPTP components or modulators) 
is unknown, but the interaction with ANT seems to be a 
driving point for some of them. Interestingly, all of these 
kinases can also control energy metabolism, suggesting 
that signal transduction pathways may have evolved 
to exert coordinated control of energy production and 
mitochondrial stress tolerance via mPT.

Additionally, multiple members of the BCL-2  
family have been reported to regulate mPTP opening. 
The proapoptotic members of the family, BAX, BAK 
and BAD, are all positive regulators of mPT 85–87 (see the 
next section). Antiapoptotic BCL- XL has been reported 
to interact with ATP synthase, favouring its enzymatic 
activity in ATP production88, and has been proposed to 
disfavour the molecular transition from ATP synthase  
to the mPTP89. These findings raise the intriguing pos-
sibility that BCL-2 family members can have a direct 
impact on ATP synthase conformation and therefore 
mPTP formation, although further experiments are 
required to confirm this hypothesis.

All these data indicate the need to integrate the acti-
vity of the mPTP in the whole picture of cell physiology 
— via signalling networks — to maximize its impact in 
the adaptation of cell function to different contexts.

Mitochondrial changes induced by mPT
Upon opening of the mPTP, any molecule that exhibits a 
gradient across the IMM may passively diffuse into the 
intermembrane space and later, via the semipermeable  
OMM, into the cytoplasm. It follows that mPT has a signi-
ficant impact not only on the physiology of mitochondria 
but also on the whole cell (see the next section).

BCL-2 family
a group of evolutionarily 
conserved proteins that 
harbour a bCl-2 homology 
domain. Mostly known for their 
regulatory role in regulated cell 
death, mostly apoptosis.

Sirtuin
Member of a family of 
NaD- dependent protein 
deacetylases or (aDP- ribosyl)
transferases able to respond  
to nutrient stress, potentiating 
mitochondrial biogenesis  
and activity.

ERK- mediated signalling
a signal transduction pathway 
regulating cellular processes 
that includes proliferation, 
differentiation, apoptosis and 
stress responses, having  
a major impact in tumour 
development.
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Physiological mPTP flickering is a phenomenon that, 
by offering an alternative route for Ca2+ efflux from the 
mitochondrial matrix, can control the amount of Ca2+ 
inside the mitochondria and in turn Ca2+- related metab-
olism (Fig. 2). Moreover, the low- conductance mPTP 
opening permits the extrusion of endogenous ROS90 
and other molecules produced inside the mitochondria 
into the cytoplasm, where they impact cell physiology, 
as described in the next section.

Conversely, persistent and widespread opening of 
the high-conductance mPTP has a profound impact  
on the activity of mitochondria, particularly on the respi-
ratory chain, causing depletion of NADH91,92 — the major  
source of electrons for respiratory chain activity — as well 
as inducing the disassembly of respiratory supercom-
plexes93, which are aggregates of respiratory complexes 
that are thought to increase the efficiency of electron flow 

within the respiratory chain. The resulting impairment 
of electron flow, especially within complex I, leads to an 
increase in ROS production, which soon exceeds the 
physiological level associated with ROS signalling94.

Accordingly, the prolonged opening of the mPTP 
causes a detrimental impairment of mitochondrial 
physiology and energy metabolism. When the mPTP 
is opened to high conductance, the redistribution of 
ions and small molecules causes an inverse redistri-
bution of H2O (Fig. 2). Water entry into the mitochon-
drial matrix increases the osmotic pressure, leading 
to partial distension of the mitochondrial cristae and 
enlargement of the matrix volume, leading to mito-
chondrial swelling. Since the IMM has a much larger 
area than the OMM, mitochondrial swelling requires a 
profound remodelling of the OMM, otherwise opposing 
IMM distension. The original report documenting this 

Respiratory chain
a group of multimeric protein 
complexes in the inner 
mitochondrial membrane, 
carrying mitochondrial 
respiration.

Table 2 | Proteins reported to modulate the mPTP

Protein mPTP 
regulation

Molecular mechanism refs

AKT Negative Mediates association of HKII with outer mitochondrial membrane 264

BCL- XL Negative Unknown; it is proposed that it stabilizes the ATP synthase structure to 
impede mPTP formation

89

ERK Negative Phosphorylates and inhibits GSK3β 72,265

HIF1α Negative Upregulates HKII 145

HKII Negative Unknown; it is proposed to act on VDAC 82,263,266

HSP60 Negative Mediated by the interaction with CypD 105

HSP90 Negative Mediated by the interaction with CypD 106

mCK Negative Unknown 80,240

PKA Negative Phosphorylates VDAC, although is not clear if this phosphorylation directly 
affects mPT

84

PKCε Negative Apparently mediated by GSK3β 75,83,267

SGK1 Negative Phosphorylates VDAC, sending it for proteasomal degradation 223,224

SIRT3 Negative Deacetylates CypD and OSCP, blocking their interaction 13,68,70,71

SPG7 Positive Interacts with CypD, VDAC and ANT; also regulates mitochondrial Ca2+ 
homeostasis

268,269

TRAP1 Negative Mediated by the interaction with CypD 106

CypD Positive Reduces the Ca2+ affinity of the mPTP via an unknown mechanism. The 
binding with CsA detaches CypD from ATP synthase, and it is postulated  
that this can cause conformational rearrangement of ATP synthase to expose 
Ca2+- binding sites

13,248,257,261,270–274

DNAJC15 Positive Mediated by the interaction with CypD 66

GSK3β Positive Mediated by the phosphorylation of CypD 262

p53 Positive Mediated by the interaction with CypD 13,235,275

VDAC Positive Unknown; it is hypothesized that it could stabilize the mPTP complex, 
although its presence is not mandatory for mPT

32,276,277

BAX Positive Mediated by the interaction with ANT 278

BAK Positive Mediated by the interaction with VDAC 279

BAD Positive Unknown, although evidence indicates the participation of PKA and PKC 87

AKT, RACα serine/threonine- protein kinase; ANT, adenine nucleotide transporter; BCL- XL, BCL-2- like protein 1, isoform L;  
CsA, cyclosporine A; CypD, cyclophilin D; DNAJC15, DNAJ homologue subfamily C member 15; ERK, extracellular- signal- regulated 
kinase; GSK3β, glycogen synthase kinase 3β; HIF1α, hypoxia- inducible factor 1α; HKII, hexokinase II; HSP, heat shock protein;  
mCK, mitochondrial creatine kinase; mPT mitochondrial permeability transition; mPTP, mitochondrial permeability transition pore; 
OSCP, oligomycin sensitivity-conferring protein; PKA, protein kinase A; PKC, protein kinase C; SGK1, serum/glucocorticoid-regulated 
kinase 1; SPG7 , spastic paraplegia type 7 protein; TRAP1, tumour necrosis factor type 1 receptor-associated protein; VDAC, voltage 
dependent anion channel.
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mPTP- induced mitochondrial swelling proposed that 
this event is accompanied by mechanical rupture of the  
OMM. However, it is now established that the loss  
of OMM integrity is mediated by BAX and BAK, which 
oligomerize to form pores that are large enough to  
permit the extrusion of the IMM85,95.

Mechanistically, the dissipation of mitochondrial 
membrane potential caused by proton influx into the 
matrix influences mPTP voltage sensing, favouring its 
open state. In addition, dilution of the enzymes and 
metabolites caused by swelling results in an inhibition of 
the tricarboxylic acid (TCA) cycle and respiratory com-
plex function, which are unable to counteract proton 
leakage. In the absence of a mitochondrial membrane 
potential and with the dilution of its substrates, ATP 
synthase stops ATP synthesis, causing rapid blockade of 
ATP- dependent reactions. At this stage, mitochondria 
are unable to generate the conditions needed to close the 
mPTP, making it irreversible, which in most cases results 
in cell death (Fig. 2).

Cellular consequences of mPTP opening
As described already herein, mPTP opening has crucial 
implications for mitochondrial structure and function, 
which are proportional to the magnitude of IMM per-
meabilization. Mitochondria are central for regulating 
cellular functions, from the control of intracellular mes-
sengers (for example, Ca2+ and ROS) and modelling  
of metabolism to dramatic processes as engagement of 
RCD. Then, is not surprising that the mPTP connects to 
the same processes.

Impact on mitochondrial bioenergetics and ROS pro-
duction. One major implication of mPTP opening is 
alteration of cellular metabolism owing to the redistri-
bution of ions and metabolites involved in biochemical 
reactions and the impairment of mitochondrial activity, 
which usually sustains multiple biochemical pathways 
in the cell. Deletion of CypD limits transient mPTP 
flickering33, causing an elevation of mitochondrial 
Ca2+ levels that is sufficient to boost the TCA cycle96. 
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Fig. 2 | Mitochondrial consequences of mPT. a | The low- conductance 
current associated with mitochondrial permeability transition (mPT) allows 
redistribution of H+ and Ca2+ across the inner mitochondrial membrane 
(IMM). Mitochondria experience brief depolarization (reduction of 
membrane potential (ΔΨm)), which temporarily shuts down mitochondrial 
bioenergetics and contributes to generation of reactive oxygen species 
(ROS). However, the reduction of pH and intramitochondrial calcium 
concentration associated with mitochondrial permeability transition pore 
(mPTP) opening induces the closure of the mPTP and restoration of 
mitochondrial physiology. b | The high- conductance current of mPT causes 
complete and persistent mitochondrial depolarization, and redistribution 
of ions and solutes of up to 1.5 kDa across the mitochondrial membrane. In 
response, mitochondrial respiratory supercomplexes disassemble and 
respiratory complex I induces production of ROS (left). The large 

depolarization can induce the activation of mitophagy (driven by 
PINK1–parkin or alternative mechanisms) (top right), resulting in clearance 
of mitochondria affected by the mPTP (serving as a quality control 
mechanism against negative cellular consequences of mPT) (Fig. 4). If such 
mitochondria are not cleared, the widespread redistribution of ions 
eventually causes the influx of water and then the expansion of 
mitochondrial volume, with distension of the IMM and the disappearance 
of mitochondrial cristae. This activates the outer mitochondrial membrane 
(OMM) pore- forming proteins BAX and BAK, which then cause fenestration 
of the OMM, leading to its permeabilization, ultimately triggering regulated 
cell death (RCD) with necrotic or apoptotic features, depending on ATP 
availability. BAX/BAK oligomerization can also be associated with the 
extrusion of the IMM through the BAX/BAK pores. IMS, intermembrane 
space; TCA, tricarboxylic acid.
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Consistent with this scenario, mitochondria isolated 
from mice carrying a deletion of the gene Ppif (which 
encodes CypD) display alterations in TCA cycle 
metabolites96, glucose uptake97, gluconeogenesis rates98 
and expression levels of the genes involved in branched- 
chain amino acid degradation, the TCA cycle and fatty 
acid oxidation96,99. It must be noted though that CypD 
targets other than the mPTP have also been proposed to 
regulate metabolism96. In addition, a high- fat diet in mice 
induces mitochondrial damage via mPT, causing insulin 
resistance97 and liver accumulation of triglycerides100.

As already mentioned, the mPT promotes ROS pro-
duction. The sustained increase in ROS levels is det-
rimental for mitochondria and favours further ROS 
production via multiple mechanisms (a phenomenon 
called ‘ROS- induced ROS production’). As an example, 
ROS can detach cytochrome c from IMM lipid cardi-
olipin, making it incapable of transporting electrons from 
complex III to complex IV. Electrons then accumulate 
across respiratory complexes I and III, further boosting 
their ROS production. ROS can diffuse to surrounding 
mitochondria that have not undergone mPT, lowering 
the threshold for mPTP opening and triggering a vicious 
cycle that can eventually lead to widespread cellular ROS 
production101 and damaging oxidative stress (Fig. 2).

Induction of RCD. Widespread mPTP opening causes 
an energetic crisis in the cell that the reported increase 
in glycolytic rates cannot counteract. Furthermore, 
increased glycolytic activity leads to the accumulation of  
pyruvate and, therefore, lactate, causing acidification  
of the cytoplasm and mitochondrial matrix. The limited 
ATP availability impairs plasma membrane ATPases that 
actively pump Na+, Ca2+ and H+ outside the cytosol and 
the sarcoplasmic/endoplasmic reticulum Ca2+- ATPase 
(SERCA) that pumps Ca2+ within the endoplasmic retic-
ulum lumen. Na+ and Ca2+ gradients are then dissipated, 
and the slowdown of H+ pumping contributes to cyto-
plasmic acidification. The dramatic loss of ion gradients 
ultimately leads to the collapse of the plasma membrane 
and cell death with necrotic features1,102,103 (Fig. 2).

However, necrosis is not the only outcome of detri-
mental mPT. Indeed, the loss of OMM integrity induced 
by mitochondrial swelling (see the previous section) 
allows the release of proapoptotic factors into the cytosol: 
cytochrome c, mitochondrial apoptosis- inducing factor 1  
(AIFM1), serine peptidase HTRA2, Diablo and endo-
nuclease G. The release of these factors initiates 
the intri nsic pathway of apoptosis, ultimately leading to 
cell death102,103. Compelling evidence indicates that mPT 
can induce both routes of RCD12,104–106, and the factor 
determining the choice between necrosis and apoptosis 
appears to be cellular ATP levels. Apoptosis is an energy-  
dependent process, and it was demonstrated that forc-
ing the elevation of ATP production induces the switch 
from necrosis to apoptosis after mPT induction107 (Fig. 2). 
Whether this choice is solely dependent on the energetic 
status of the cell or on the extent of mPT induction 
remains to be determined. In addition, while most data 
indicate that RCD results from high conductance- induced 
mitochondrial swelling, a formal demonstration that 
RCD is not induced by low conductance is still missing.

Induction of mitophagy. Opening of the mPTP can 
induce removal of mitochondria via mitophagy108. In 
different in vitro systems, depolarization of mitochon-
dria leading to their incorporation into lysosomes has 
been observed upon induction of cell starvation, and 
this phenomenon is strongly inhibited by mPTP desen-
sitizers such as CsA or its analogues109,110. Elevation of 
cytoplasmic Ca2+ levels and oxidative stress — both 
closely associated with mPT — are related to induction 
of the autophagic response111,112 and are the most likely  
promoters of mPTP- related mitophagy.

Multiple molecular routes are described to deliver 
damaged mitochondria to lysosomes for degradation; 
the best characterized is the PiNK1–parkin system113. 
This mechanism has been proposed to mediate 
mPTP- induced mitophagy after deletion of the mito-
chondrial fission protein DRP1 (reF.114) or laser- induced 
ROS production (Fig. 2). Interestingly, carbonyl cyanide 
m- chlorophenylhydrazone- induced mitochondrial 
depolarization — a potent mPTP stimulus — results in 
CsA- independent recruitment of parkin to mitochondria115, 
suggesting that mPTP opening is not the only route  
for activation of mitophagy in stressed mitochondria.

Mitophagy also impacts mPT, as its genetic inacti-
vation (primarily via deletion or suppression of PINK1 
and parkin) causes the accumulation of dysfunctional 
mitochondria, which exhibit reduced mitochondrial 
membrane potential and increased ROS production. 
This condition lowers the threshold for mPTP opening, 
making mitophagy- deficient cells prone to undergo 
spontaneous mPT116–118. Confirming the important 
role of mitophagy in alleviating cellular stress resulting 
from mPT, CsA administration recovers mitochondrial  
alterations related to PINK1 deletion117.

Regulation of stem cell fate. Several pieces of evidence 
link mPTP opening to cellular differentiation and the 
regulation of stem cell fate. During mouse cardiac devel-
opment, especially at embryonic day 9.5 (the early phase 
of cardiac development in the mouse) when the tissue is 
enriched in stem/progenitor cells, mitochondria appear 
fragmented with disorganized cristae, a depressed mito-
chondrial membrane potential and elevated ROS pro-
duction, suggesting frequent mPTP opening events119. 
By contrast, at embryonic day 13.5 (when the devel-
oping heart obtains the adult shape and is enriched in 
differentiated cells), this mitochondrial phenotype is 
suppressed. Emergence of the entire mitochondrial 
phenotype observed at embryonic day 9.5, was inhibited 
by CsA administration or CypD deletion. Most inter-
estingly, pharmacological or genetic inhibition of the 
mPTP resulted in an acceleration of myocyte differenti-
ation, while mPT induction delayed it120. Furthermore, 
the administration of pro- oxidants or antioxidants con-
firmed that mPT- induced ROS were responsible for 
the delay of the differentiation programme in cardiac 
stem cells119. Other investigations have demonstrated 
that mitophagy is required for myoblast differentiation 
in vitro116 and for perinatal cardiac development121, 
suggesting that the mPT and ROS promote stemness, 
whereas mitophagy can remodel the mitochondrial 
network, removing mitochondria with mPT to promote 

Necrosis
a form of poorly regulated  
cell death characterized by 
energetic crisis and its 
consequent chaotic disruption 
of intracellular structures.

Mitophagy
The selective degradation  
of a mitochondrion via the 
lysosomal machinery.

PINK1–parkin system
a kinase/ubiquitinase system 
required for the tagging of 
outer mitochondrial membrane 
proteins, which in turn label 
mitochondria to be cleared via 
lysosomal degradation.
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differentiation. Cardiac tissue appears phenotypically 
normal upon CypD loss in adult mice (Ppif−/−)12,106, but 
it displays reduced contractility under resting conditions 
and a higher propensity to develop hypertrophy and 
heart failure following pressure overload35. The impact of 
the mPTP on cardiomyocyte differentiation from pluri-
potent stem cells has also been demonstrated. In parti-
cular, the induction of differentiation to cardiomyocytes 
via dedicated media was favoured by the administration 
of CsA or its analogues122.

These observations indicate that the cardiomyo-
cytic differentiation programme specifically requires 
mitochondrial maturation and that mPTP opening 
opposes this process, favouring the maintenance of an 
undifferentiated phenotype. This principle appears to 
be a common trait for the maintenance of pluripotency. 
Indeed, it was observed that the generation of induced 
pluripotent stem cells also requires mPTP opening123. In 
particular, mouse embryonic fibroblasts transduced with 
the reprogramming factors Sox2, Klf4, Oct4 (also known 
as Pou5f1) and Myc display features of spontaneous mPT, 
which can be reversed by exposure to CsA or knocking 
down Ppif. This event is associated with potentiation of 
the release of ROS and increase in miR-101c expression, 
which then promotes expression of plant homeodomain 

finger protein 8 (PHF8), a JmjC domain- containing pro-
tein that acts as a histone demethylase. PHF8 induction 
by the mPTP leads to demethylation of histone repressive  
marks and a reduction in their occupancies on the pro-
moter regions of pluripotency genes, explaining the 
induction of pluripotency by mPT123. Furthermore, 
pharmacological desensitization of the mPTP favours 
the differentiation of induced pluripotent stem cells 
to endothelial cells124. It was also observed that mPT 
induces the release of α- ketoglutarate, a known regulator 
of stem cell fate decisions125,126.

These observations are consistent with the most 
accepted model, which shows that poor mitochondrial 
maturation and low aerobic respiration efficiency favour 
stem cell maintenance and inhibit commitment in mul-
tiple models (for example, embryonic cells, adult cells or 
induced pluripotent stem cells)125,126. Furthermore, mito-
phagy has also been observed to participate in the main-
tenance of the immature mitochondrial phenotype125,127. 
Therefore, the emerging model is that spontaneous 
mPTP opening favours the immature mitochondrial 
state, which inhibits commitment of stem cells and sup-
ports their maintenance (Fig. 3a). Further investigation 
will be required to validate these mechanisms across 
stem cell types.
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Fig. 3 | cellular roles of mPT. a | Opening of the mitochondrial permeability 
transition pore (mPTP) can favour the maintenance of stem cells via 
mechanisms involving the release of reactive oxygen species (ROS) and 
α- ketoglutarate (α- KG) from mitochondria. ROS can activate the expression 
of histone demethylase plant homeodomain finger protein 8 (PHF8) by 
increasing the expression of its positive regulator, the microRNA miR-101C. 
PHF8, together with α- KG as its cofactor, downregulates inhibitory histone 
marks on promoters of pluripotency- associated genes, increasing their 
transcription. α- KG is also a cofactor for the DNA demethylation enzyme 
TET, promoting reduction of DNA methylation, which also inhibits gene 
expression (in this context, pluripotency- associated genes). These 
mechanisms support stem cell self- renewal and can favour cell 
reprogramming. Accordingly, a differentiated cell phenotype is associated 
with closure of the mPTP, and interference with mPTP opening can promote 

stem cell differentiation. b | In multiple models, including immune cells, 
mitochondrial permeability transition (mPT) favours the release of 
fragments of mitochondrial DNA (mtDNA), which engage the cyclic  
GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING) pathway 
or activation of the inflammasome. Both pathways cause elevation of the 
levels of pro- inflammatory cytokines with the engagement of inflammatory 
response. Proinflammatory cytokines (for example, tumour necrosis factor 
(TNF), interferon- γ (IFNγ), interleukin-1 (IL-1) or IL-6) reaching a target cell 
(different cells types undergo this mechanism, for example, immune cells, 
hepatocytes and skeletal muscle cells) can elicit mPT via ROS production, 
ultimately leading to regulated cell death (RCD). The exact mechanism 
governing the release of the mtDNA is currently not known (question mark). 
H3K9me3, trimethylated histone H3 K9; H3K27me2, dimethylated histone 
H3 K27; IMM, inner mitochondrial membrane.
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Initiation and potentiation of inflammation. The regu-
lation of inflammation and mPTP opening are mutually 
linked. Genetic deletion of CypD reduces expression of 
pro- inflammatory cytokines in resting mouse aorta128 
and attenuates the inflammatory response induced by 
the exposure to bacterial products (such as lipopolysac-
charide) in macrophages129 or liver130. Also, the mPTP 
inhibitor Debio 025 inhibits spontaneous inflammation 
in a mouse model of Duchenne muscular dystrophy131. 
This suggests that mPT participates in the physiological 
regulation of the immune response, although a deeper 
characterization is required.

From the mechanistic perspective, prototypical 
pro- inflammatory cytokines, such as tumour necrosis 
factor (TNF), interferon- γ (IFNγ), interleukin-1 (IL-1) 
and IL-6, can induce mitochondrial dysfunction and 

RCD in a CsA- inhibitable manner132–134. Some reports 
indicate that the mPT is induced by cytokines via ROS 
production, although the existence of more regulated 
signalling downstream of cytokine receptors cannot be 
excluded133,134.

In turn, inflammation can also be triggered by the 
mPTP. In multiple models, including immune cells, 
opening of the mPTP allows the release of mitochon-
drial DNA (mtDNA) fragments into the cytoplasm in 
response to irradiation, oxidative stress or exposure to 
lipopolysaccharide and extracellular ATP (acting as a 
danger signal informing of local cell damage)130,135–137. 
Considering the large dimensions of double- stranded 
DNA, it is unlikely that the mPTP directly mediates 
the crossing of mtDNA, and the mechanism of mtDNA 
passage through the IMM is still under investigation. 
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Once in the cytosol, mtDNA functions as a damage- 
associated molecular pattern, activating cGMP–AMP syn-
thase (cGAS), stimulator of interferon genes (STING) 
and inflammasome complexes, which, in turn, potentiate 
the production of pro- inflammatory cytokines. Which 
of the many inflammasome complexes are involved in 
mtDNA recognition is still debated137,138.

The interaction between the mPTP and inflamma-
tion is important for understanding human diseases and 
may be responsible for the potentiation of inflammation 
in several conditions characterized by extensive inflam-
mation. An example comes from recent observations 
in the context of amyotrophic lateral sclerosis. TDP43, 
a DNA/RNA- binding molecule that is often mutated 
in familial forms of amyotrophic lateral sclerosis, was 
recently proposed to mediate neurodegeneration via 
potentiation of the inflammatory response139–141. More 
recently, TDP43 was shown to localize to mitochondria 
to favour mtDNA release via the mPTP, cGAS–STING 
activation and progressive neurodegeneration in mouse 
models142 (Fig. 3b).

Role of mPTP in diseases and ageing. In the previous 
section, we stressed the major cellular consequences 
of mPTP opening. These events can further develop to 
cause major alterations to tissues and organs, ultimately 
leading to pathological conditions.

Acute tissue failure in response to ischaemia–reperfusion.  
ischaemia and consequent reperfusion injury are pathologi-
cal manifestations in which the involvement of mPT has 
been robustly confirmed14,143,144. Ischaemia is associated 

with the adaptation to low oxygen level (hypoxia) in  
the tissue affected by the reduced blood supply. This 
adaptation causes a new, temporary equilibrium in the 
affected tissue that elevates the levels of mPTP inducers 
(Ca2+ and ROS), which are counterbalanced by a low pH 
and an increase in the ADP/ATP ratio. In addition, in 
in vitro models, the stabilization of hypoxia- inducible 
factor 1α (HIF1α) upregulates the mPTP desensitizer 
HKII145,146, which protects the reoxygenation- induced 
mPTP145 (see the following discussion). It is thought 
that in the ischaemic phase, mPT occurs only minimally, 
although a protective effect of CsA has been observed 
in some experimental models147–149. At the reperfusion 
stage, the restoration of partial pressure of O2 recovers 
respiration, ATP synthesis and the activity of plasma 
membrane pumps, which re- equilibrate the intracellu-
lar pH. The inhibitory effect mediated by ADP and the 
acidic pH is weakened, and ROS production from multi-
ple sources150 is also stimulated by increased activity of 
the electron transport chain, causing the abrupt opening 
of the mPTP151 (Fig. 4a).

One of the first and most compelling pieces of evidence 
involving mPT in ischaemia–reperfusion injury was pro-
vided with radioactive 2- deoxy- d- glucose152. To date, no 
mitochondrial transporters for 2- deoxy- d- glucose are 
known; therefore, its accumulation in the mitochon-
drial matrix is allowed only by the opening of the mPTP. 
Isolated dog hearts exposed to 2- deoxy- d- glucose and 
undergoing a cycle of ischaemia–reperfusion injury 
could accumulate this radioactive marker only in the 
reperfusion phase, and this effect could be inhibited 
by treatment with CsA152. This early evidence was later 
confirmed in several experimental models and tissues, 
including cardiac and skeletal muscle, brain, kidney, 
liver, lungs and testis153–159. In all these models, involve-
ment of the mPTP was validated by the protective effect 
of CsA. Furthermore, the advent of knockout animal 
models for regulators of this phenomenon supported 
this concept. Indeed, protection of cardiac and neural 
tissues in terms of both tissue function and survival 
rates has been reported for Ppif−/− mice12,106,160 and for 
animal models in which mitochondrial Ca2+ level was 
lowered or ablated, including cardiac- specific deletion 
of the plasma membrane Na+–Ca2+ exchanger NCX 
(which is responsible for the intracellular elevation of 
Ca2+ level during ischaemia)161, BCL-2 overexpression162, 
cardiac- specific overexpression of the mitochondrial 
Na+–Ca2+ exchanger (NCLX)163 and pharmacological 
(by exposure to the mitochondrial Ca2+ uptake inhibitor 
Ru360) or genetic (knockout) blockade of mitochon-
drial calcium uniporter164–166. Recently, a mutation in the 
glycine- rich domain of ATP synthase subunit c, which 
is responsible for increased conductance in reconsti-
tuted c- ring and greater mPTP opening, was associated 
with increased mPTP opening and worse outcomes in 
patients with acute heart infarction16,167. CsA has signif-
icant mPTP- independent and cyclophilin A- dependent 
immunosuppressive activity168. Nonetheless, the use of 
CsA analogues lacking immunosuppressive activity, 
or CypD- independent mPTP inhibitors (Table 1), has 
displayed comparable protection in models of ischae-
mia–reperfusion injury169–174. At present CsA is the 
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Fig. 4 | Pathological consequences of mitochondrial permeability transition.  
a | In ischaemic tissue, hypoxia sets the conditions to favour the closed state of the 
mitochondrial permeability transition pore (mPTP). At the reperfusion phase (for example, 
induced by counterpulsation of the intra- aortic balloon pump introduced into the 
blocked vessel), the restoration of normoxia elicits a rapid burst of reactive oxygen 
species (ROS), which triggers mPTP opening, ultimately leading to the induction of 
regulated cell death (RCD), mostly in the form of necrosis (owing to low supply of ATP  
in the postischaemic tissue) (Fig. 2b). b | In chronic diseases with degenerative evolution, 
the presence of detrimental mutations can lead to protein aggregates (for example, in 
neurogenerative diseases such as Parkinson disease or Alzheimer disease) or an impaired 
electron transport chain (for example, in mitochondrial diseases), which induces 
mitochondrial ROS production. This results in mPTP opening and RCD causing the 
chronic loss of postmitotic cells, ultimately leading to tissue degeneration. c | Ageing is 
characterized by progressive opening of the mPTP, accompanied by ROS production  
and inhibition of autophagic/mitophagic processes. The mPTP opening thus promotes 
cell decline and inhibits the anti- ageing effect of autophagy. Decline in mitophagy also 
promotes further mPTP opening, as mitochondria affected by the mPTP cannot be 
efficiently cleared by this quality control pathway (Fig. 2b). Such excessive mPTP opening 
can trigger harmful mitophagy, which might result in clearance of mitochondria without 
their replenishment, thereby resulting in a cellular energy crisis and contributing to  
cell function decline. d | The suppression of mPTP opening is proposed to participate  
in tumour progression. In normal cells, ROS production and mitochondrial Ca2+ 
cooperate to induce mPTP opening. This mechanism is favoured by the activity of  
some oncosuppressor proteins (for example, BAP1, p53, PML and PTEN). The tumour 
suppressor p53 is also reported to favour the direct opening of the mPTP via the 
interaction with cyclophilin D (CypD). In tumour cells, loss of oncosuppressor protein  
and the activation of oncoproteins (for example, BCL-2, AKT and HRAS) impairs Ca2+ 
signalling, disfavouring mPTP opening and RCD induction, even despite an elevation of 
ROS levels (independent of mPTP), which generally, in cancer, promote cell migration, 
proliferation and survival. Also, some tumour cells display increased levels of HSP60, 
HSP90 or ERK signalling, which have an inhibitory effect on the mPTP. OXPHOS, 
oxidative phosphorylation.
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only established mPTP inhibitor that has entered clin-
ical trials to test its efficacy in treatment of ischaemia– 
reperfusion injury. However, the results obtained from 
the trials indicate that CsA administration did not pro-
vide any measurable clinical benefit when administered 
at the time of reperfusion. This might be due to the lim-
ited knowledge of mPTP dynamics in the human dis-
ease, the pharmacokinetic properties of CsA as well as the 
presence of confounding factors in the selected cohorts 
(for example, the presence of co- morbidities or concur-
rent medications), still leaving the mPTP as a potential 
target for the treatment of this disease175.

Involvement of the mPTP is also proposed for acute 
tissue failure events that occur at normal partial pressure 
of O2 (therefore not ischaemic), which is particularly true 
for acute kidney injury. Indeed, extended necrotization of 
kidney tissue is frequently observed because of exposure 
to drugs (for example, non- steroidal anti- inflammatory 
drugs or chemotherapy) and crystal- induced kidney 
injury176,177. The cause of this tissue damage, which 
resembles reperfusion injury, is not yet fully understood, 
although it is proposed to involve excess ROS produc-
tion, which ultimately triggers mPT178. In agreement with 
this possibility, inhibition of GSK3β impairs mPT induc-
tion in models of drug- induced nephrotoxicity179,180. 
Substantial evidence based on knockout animal models 
indicates that in acute kidney injury, mPT mediates tis-
sue damage by the induction of a subtype of RCD named 
‘necroptosis’176,177,181.

Diseases with chronic manifestations. A role for mPT 
has also been proposed for conditions with a chronic 
and degenerative evolution, which are often associated 
with ageing. Such is the case for Alzheimer disease182,183, 
Parkinson disease (and related subcategories)184,185, car-
diovascular diseases such as heart failure35,143,186 and 
atherosclerosis, and overt genetic conditions such as 
mitochondrial disorders (related to mtDNA mutations) 
and other conditions (for example, multiple sclerosis, 
Ullrich congenital muscular dystrophy and dominant optic 
atrophy)183,187–192.

The rationale for the involvement of mPT in these 
various diseases is that a disease- associated perturbation 
of the cellular environment (for example, the presence of 
aggregates or defective function of the respiratory chain) 
directly or indirectly causes the elevation of intracellu-
lar ROS production, mild dissipation of mitochondrial 
membrane potential and, less frequently, elevation of 
intracellular Ca2+ level. These phenomena will increase 
the frequency of spontaneous mPT, negatively impact-
ing on cellular bioenergetics, which reduces cell viability 
and eventually causes excessive RCD. This sequence of 
events ultimately causes major functional impairment  
of the tissue and eventually organ failure (Fig. 4b).

For most of the conditions mentioned, alterations of 
mitochondrial function and different mPTP opening 
thresholds have been reported in samples obtained from 
patients183,187,188 as well as in related animal models35,189–191. 
The leading cause of mitochondrial alteration is proposed 
to vary among different conditions. For example, for 
Alzheimer disease and Parkinson disease, the presence 
of protein aggregates can directly affect mitochondria 

or impair the mitophagy process183,189,191,193–200. Again, 
for some of the genetic disorders mentioned, the muta-
tion causes disproportionate expression of respiratory 
complex subunits and inefficient assembly or direct 
impairment of their activity. For multifactorial diseases 
(for example, heart failure or multiple sclerosis), mPT 
activation mechanisms are still unclear14. Additionally, 
for many genetic animal models of these conditions, a 
partial recovery of tissue function and a reduction in 
RCD were obtained by deletion of Ppif, with prolonged 
administration of mPTP inhibitors (for example, CsA, 
the 4- aminobenzenesulfonamide derivative C-9 and 
GNX-4728) or removal of external Ca2+ (reFs183,185,201–207).

Ageing. Multiple lines of evidence have shown that mPT 
is associated with ageing. In particular, the mPTP open-
ing threshold is lowered in mitochondria from old mice 
versus young mice208–210. Additionally, the spontaneous 
flickering of the mPTP was associated with ageing in 
Caenorhabditis elegans211.

The reason for the increased probability of mPTP 
opening in aged tissues remains unknown. Differences 
in the mPTP between young mice and old mice are dra-
matically attenuated by the administration of CsA, sug-
gesting that the driving alteration lies in the mechanism 
controlling the mPTP threshold rather than structural 
alteration of its core. Consistent with this possibility, 
aged tissues are often reported to have increased levels 
of pro- oxidants212, which could sensitize the mPTP to 
induction.

The mPT in aged cells could contribute to detri-
mental tissue degeneration via excessive activation 
of RCD or increased ROS production (supporting 
the free radical theory of ageing). It has also been pro-
posed that prolonged mPTP opening participates in 
ageing- dependent depletion of cellular NaD+. This mole-
cule opposes cellular ageing, partly via sirtuin activity213. 
The mPT favours NAD+ redistribution from the mito-
chondrial matrix to the cytosol, where it is hydrolysed 
by the NAD+- consuming enzymes CD38 and PARP1 
(reFs92,214). In addition, in the ageing mouse brain, the 
CypD–OSCP interaction is favoured, resulting in sen-
sitized mPTP opening215. Interestingly, Ppif deletion in 
one allele increased the mouse lifespan, in contrast to 
complete knockout, suggesting that while mild mPTP 
inhibition could be beneficial in acting to slow ageing, 
its complete inhibition might be detrimental, possibly 
because of the loss of its physiological roles (described 
in the previous section)216.

In contrast to mPT, the mitophagy process appears 
to be under- represented in aged tissue217–219. Mitophagy 
(and more generally autophagy) opposes ageing, and 
multiple strategies that favour mitophagy/autophagy  
have been proven to increase lifespan in multiple sys-
tems220–222. Recent evidence indicates that the anti- ageing 
effect of autophagy appears to be dependent on mPTP 
inhibition. Mechanistic target of rapamycin (mTOR) 
complex 2 (mTORC2) inhibits autophagy via serum/
glucocorticoid- regulated kinase 1 (SGK1). SGK1 phos-
phorylates VDAC, favouring its ubiquitination and 
degradation223,224, finally desensitizing mPTP opening224. 
Genetic interference with SGK-1 in C. elegans causes 
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VDAC accumulation, mPTP opening and mitochon-
drial ROS production. Curiously, these changes pro-
mote increased autophagy/mitophagy, finally leading 
to a dramatic reduction in lifespan. Inhibition of 
autophagy or the mPTP in SGK-1- deficient C. elegans 
restores lifespan224. These data suggest that mitophagy 
could help prevent detrimental mPTP opening dur-
ing ageing, thereby preserving cell function, and that 
ageing- associated decline in autophagy leads to cell dys-
function, at least partly due to harmful effects of mPT as 
described above. Interestingly, excessive mPTP opening 
seems to promote autophagy with harmful effects on 
lifespan. It is proposed that this is a rather unexpected 
form of autophagy, leading to non- specific clearance of 
mitochondria and failure to replace those mitochondria 
with normal, healthy organelles, which ultimately accel-
erates cell dysfunction. This intriguing possibility could 
provide a significant advance in understanding the rela-
tionship between autophagy and longevity and deserves 
further investigation (Fig. 4c).

Overall, pathological mPTP opening appears to 
be a hallmark of ageing, and further investigation will 
inform on the possibilities of its targeting for ageing 
amelioration.

Desensitization of the mPTP in malignancies. As the 
mPTP is a mediator of RCD, it was long hypothesized 
that suppression of the mPTP could be a feature of neo-
plastic cells. To date, there are no reports that confirm or 
refute this hypothesis, as mPTP opening could be easily 
achieved in tumour cells in vitro.

In addition, ROS production is generally considered 
augmented in cancer cells, favouring tumour cell pro-
liferation and migration225,226. This suggests that mPTP 
opening could be stimulated rather than inhibited in 
neoplastic cells. Considering the dramatic selective 
pressure to which tumour cells are exposed, it could be 
speculated that another mechanism intervenes to desen-
sitize mPTP opening and permit protumorigenic ROS 
production without engaging RCD.

Several oncogenes whose activity is associated with 
suppression of RCD have been demonstrated to nega-
tively impact mitochondrial Ca2+ uptake (for example, 
AKT, BCL-2 and HRAS)227–229. Concordantly, the prod-
uct of some tumour suppressors can potentiate RCD 
by favouring mitochondrial Ca2+ uptake (for example, 
BAP1, p53, PTEN and PML)230–234. This indicates that 
tumour- promoting activity is at least partially mediated 
by reducing the availability of mitochondrial Ca2+ for 
the triggering of mPT and consequent RCD. Tumour 
suppressors counteract this mechanism by augmenting 
mitochondrial Ca2+ availability (Fig. 4d).

Cancer cells can also inhibit CypD via potentiation 
of ERK activity72 or overexpression of the chaperones 
HSP90 and HSP60 (reFs64–66). Interestingly the master 
tumour suppressor p53 can induce mPTP opening via 
interaction with CypD235 and ATP synthase stability 
via interaction with OSCP236. Finally, p53 is known to 
interact with TRAP1 and HSP90 (reFs237,238), and it is 
proposed that the p53 inactivation, which is extremely 
frequent in neoplastic lesions, can further contribute to 
mPTP desensitization via this chaperone network239.

Conclusions and perspective
mPT has attracted considerable attention owing to its 
involvement in multiple cellular states. Indeed, it impacts 
mitochondrial physiology, cellular energy metabolism and 
RCD activation, making it an attractive target for regulating 
multiple physiological and pathological conditions. The 
use of Ppif−/− mice is an essential approach for investigating 
the mPTP; such investigations have revealed the participa-
tion of CypD in unexpected phenomena. Nevertheless, a 
major challenge in mPTP investigations is that apart from 
CypD, there is no consensus on its structure. Fortunately, 
a novel model involving ATP synthase has been pro-
posed (box 1), and experimental confirmation is ongoing. 
Nevertheless, there are major uncertainties about how the 
non- specific pore is formed by this complex molecular 
machine, and how it becomes sensitive to Ca2+ and ROS 
as well as what mechanisms of voltage sensing are involved; 
significant effort must be invested to confirm recent obser-
vations on the structural reorganization of ATP synthase 
during mPTP opening and add details to the model. Such 
efforts would also benefit from the use of standardized 
procedures to measure mPTP activity from isolated mito-
chondria or living cells (Supplementary Box 1). Inhibitors 
of CypD (as well as its knockout) have demonstrated the 
merit of efforts to investigate the mPTP in animal mod-
els. Experimental models recapitulating multiple human 
diseases have now shown that mPTP desensitization can 
lead to amelioration of disease. Nevertheless, no drug tar-
geting the mPTP has had positive results in completed 
clinical trials, which might be due to different factors. 
First, the drugs tested so far had relatively poor pharma-
cokinetic properties and multiple side effects compared 
with newer and more refined mPTP inhibitors. Second, 
the modality of delivery may not have been optimal, and 
it is unknown whether the drug reached its target. Third, 
the drugs tested thus far target regulators of the mPTP  
rather than its core, possibly diminishing their efficacy.

Therefore, although the activity of the mPTP was 
identified more than 40 years ago, the molecular aspects 
of its function remain elusive. The improved cryogenic 
electron microscopy technology will be instrumental in 
describing the ATP synthase structure during genetic 
and pharmacological modulation of the mPTP. This 
technology will significantly improve the current pore 
formation model and, together with data from ATP 
synthase mutants already available, will allow the gen-
eration of a better experimental model to investigate 
mPT- related phenomena. The ideal model will include 
mutants in ATP synthase subunits and ANT capable of 
affecting mPTP formation without measurably affect-
ing mitochondrial ATP homeostasis. Two mutants have 
already been proposed to affect mPTP formation with no 
alteration of ATP levels, located respectively in subunit 
c and β- subunit of ATP synthase, although mouse mod-
els are still not available. These models will permit the 
identification of low- conductance and high- conductance 
mPTP- dependent phenomena and inform on CypD 
functions not related to mPT. Eventually, these advances 
will provide a clearer picture of mPT- related diseases and 
better pharmacological strategies for their modulation.
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