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Abstract: The heart is one of the most fascinating organs in living beings. It beats up to 100,000 times a
day throughout the lifespan, without resting. The heart undergoes profound anatomical, biochemical,
and functional changes during life, from hypoxemic fetal stages to a completely differentiated four-
chambered cardiac muscle. In the middle, many biological events occur after and intersect with
each other to regulate development, organ size, and, in some cases, regeneration. Several studies
have defined the essential roles of the Hippo pathway in heart physiology through the regulation
of apoptosis, autophagy, cell proliferation, and differentiation. This molecular route is composed
of multiple components, some of which were recently discovered, and is highly interconnected
with multiple known prosurvival pathways. The Hippo cascade is evolutionarily conserved among
species, and in addition to its regulatory roles, it is involved in disease by drastically changing
the heart phenotype and its function when its components are mutated, absent, or constitutively
activated. In this review, we report some insights into the regulation of cardiac physiology and
pathology by the Hippo pathway.
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1. Introduction

The Hippo pathway is a finely regulated and evolutionarily conserved molecular cas-
cade involved in the control of tissue homeostasis and organ size that was first discovered
through genetic screening studies in Drosophila melanogaster [1].

This signaling network is complex and involves several positive and negative mod-
ulators; all the proteins found in Drosophila have mammalian orthologs responsible for
controlling cell survival, proliferation, and regeneration [2]. These usually refer to the
canonical Hippo pathway, which is initiated by signals derived from the plasma mem-
brane (PM) that are transmitted into the nucleus to activate the expression of several target
genes [3].

1.1. Hippo Pathway Components

The first evidence regarding the importance of this pathway in cell fate derives from
studies in fireflies in which the mutation of Hpo (Hippo) protein kinase led to apoptosis
impairment and uncontrolled organ size [4]. Additionally, mutated Wts (Warts) kinase
generated cell clones characterized by excessive growth and abnormal differentiation [5].
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These two proteins are core components of the pathway in Drosophila and lead to a kinase-
dependent cascade with the involvement of cofactors Salvador (Sav) and MOB-kinase
activator-like 1 (Mats) and the Yorkie (Yki) transcriptional coactivator [6].

In mammals, homologous core components of the canonical Hippo pathway, namely,
Hpo, Sav, Wts, and Mats, are the mammalian sterile 20-like protein kinase 1 and 2 (MST1/2),
Salvador homolog 1 (SAV1), large tumor suppressor 1 and 2 (LATS1/2), and MOB kinase
activator 1A and B (MOB1A and MOB1B), respectively; then, there are two Yorkie homologs:
Yes Associated Protein 1 (YAP1) and WW Domain Containing Transcription Regulator 1
(TAZ) [7] (Figure 1).
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Figure 1. Schematic representation of the key components of the Hippo pathway. Canonical Pathway:
In the “on” active state (central panel), upstream kinases (MST1/2, LATS1/2) together with their
cofactors (SAV1 and MOB1A/B, respectively) are phosphorylated. Subsequential phosphorylation of
YAP1/TAZ engages either 14-3-3 proteins for cytoplasmic retention or β-TrCP for ubiquitin-mediated
protein degradation. In the “off” inactive state (right panel), upstream kinases are inactive; thus,
YAP1/TAZ can translocate to the nucleus and bind with multiple transcription factors, including
TEADs, SMAD, PEPB2α, P73, and ERBB4, thereby regulating several genes. The central components
of the hippo pathway are regulated by several mechanisms and proteins, such as NF2, Amotl1, and
FAT4. Noncanonical pathway (left panel): MST1 can directly phosphorylate either Beclin 1 at the
ER, inhibiting autophagy in cardiomyocytes, or negatively regulating Bcl-xL at the mitochondria,
enhancing cardiomyocyte apoptosis.

Overall, the Hippo pathway exists in two different states: “on” and “off”. When the
pathway is “on” active state, MST1/2 are phosphorylated; through a complex with their
cofactor, SAV1 activates LATS1/2 kinases, which in turn interact with their regulatory
proteins MOB1A and MOB1B. As a consequence, YAP1/TAZ become phosphorylated. This
posttranslational modification prevents their translocation into the nucleus and promotes
either cytosolic sequestration by binding 14-3-3 proteins or their degradation through
β-transducin repeat-containing E3 ubiquitin-protein ligase (β-TrCP) [8].
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In the “off” state, YAP1/TAZ are not phosphorylated, so they are able to bind a
TEA domain transcription factor (TEAD) in the nucleus, leading to the transcription of
downstream target genes [9]. As already reviewed in [6], YAP1/TAZ can also interact with
other transcription factors, such as several Mothers Against Decapentaplegic Homolog 1
(SMAD) family members [10–12], p73 [13], ErbB-4 [14], and PEBP2α [15].

Drosophila mutagenesis studies have allowed the discovery of other upstream compo-
nents in this pathway: two membrane-associated FERM domain (F for 4.1 protein, E for
ezrin, R for radixin, and M for moesin) proteins Merlin (Mer) and Expanded (Ex) [16] and a
WW domain protein Kibra, which interacts with Ex and physically interacts with Mer [17].
The homolog of Mer in mammals is neurofibromin 2 (NF2). This protein regulates Hippo
signaling in response to the actin cytoskeleton state and directly interacts with LATS1/2 by
recruiting them to the PM and promoting their phosphorylation [18].

1.2. Upstream Effectors

Hippo pathway activation has captured the attention of the scientific world, and to
date, a plethora of effectors that intersect at different levels of the pathway have been
defined. At least four groups of upstream pathways modulate the Hippo pathway and
YAP1 localization (Figure 1). The first one is cell polarity and adhesion, which involves
three major complexes, including Scribble, Crumbs, and Merlin [6,19,20]. The second is
represented by the cadherin–catenin complex, in which it negatively controls nuclear YAP1,
and the third group is orchestrated by soluble growth factors as extracellular signals [6].
Furthermore, Hippo signaling is regulated by mechanical signals and cell morphology,
as demonstrated by the effect of F-actin fibers on the phosphorylation state of YAP1 [21]
and the role of YAP1/TAZ as a sensor of matrix rigidity and cell shape [22]. More recently,
several studies pinpoint the central role of Hippo pathway effectors as critical mediators of
mechanical stress in the heart [23,24]. For instance, in 2020, Yamashiro et al. identified a
matricellular glycoprotein, thrombospondin-1 (Thbs1), as an extracellular activator and
integrin αvβ1-dependent of YAP1 in response to mechanical stress. By binding integrin
αvβ1 and negatively regulating Ras-related GTPase Rap2, Thbs1 favors YAP1 translocation
into the nucleus and consequent vascular remodeling [25]. In the same year, Arun A. and
coworkers found increased levels of this protein in endothelial cells of patients infected
by Trypanosoma cruzi and in those with several cardiovascular complications and heart
damage [26,27]. In contrast, the group claimed that the upregulation of Thbs1 needed for
early infection stages limits YAP1 localization into the nucleus. This apparent controversial
finding may be an example of the tissue specificity that distinguishes this pathway. Indeed,
the tissue-specific regulation of the activity of YAP1/TAZ, which are controlled in different
ways depending on the tissue, must be noted [3,6].

1.3. A Noncanonical Point of View

Notably, YAP1 and TAZ might also be regulated by a noncanonical pathway in which
the core kinase module does not directly target and modulate the cotranscription factors
(Figure 1). Direct interactions between YAP1 and other proteins may support its restraint
into the cytosol, similar to Ex-mediated sequestration [28]. Additionally, angiomotin
(AMOT) family proteins are able to trap YAP1 and control the phosphorylation state of
YAP1/TAZ by recruiting them to different compartments, such as tight junctions and
the actin cytoskeleton [29]. Other cytoplasmic Ser/Thr kinases exist, and the most com-
monly described is MST4, which targets YAP1 to inhibit its import into the nucleus [30],
TAK1 [31], MK5 [32], and AMPK [33]. Moreover, YAP1 and TAZ are modulated via
ubiquitination–deubiquitination mechanisms (as reviewed in [34]) and by other posttrans-
lational modifications, including methylation [35] and O-GlcNAcylation [36] (Figure 1).

Given the potential of the Hippo pathway in prosurvival mechanisms and the fact that
the heart is unable to self-repair after injury, an understanding of its contribution in heart
development, homeostasis, disease, and tissue regeneration may help in the identification
of new molecular targets for cardio protection. For these reasons, we will summarize some
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aspects of cardiac development (in which apoptosis and autophagy work together in the
recycling of the building blocks of macromolecules and the elimination of cells), cardiac
disease, and the self-repair potential induced by the activity of the Hippo pathway.

2. The Hippo Pathway in Cardiac Physiology
2.1. Cardiac Development

Organ size regulation is one of the long-standing mysteries of biology, which is rela-
tively constant and under the control of organ-intrinsic mechanisms and extrinsic physical
and mechanical stress, in addition to circulating factors [37]. Throughout development, the
mammalian heart size needs to be meticulously controlled to ensure proper blood circula-
tion. Disorders in organ size (as part of the developmental process) are the most dramatic
Hippo pathway phenotype alterations found in Drosophila [38] and many other organisms.

The Hippo pathway components are expressed in all three cardiac layers known
as the myocardium, epicardium, and endocardium [38,39]. YAP1 expression plays a
pivotal role in heart development; it is present at high concentrations in embryonic and
neonatal animal hearts and disappears at approximately 12 weeks of age [40]. It triggers
cell proliferation in vitro by regulating cell cycle genes (mainly cyclins A2 and B1) and
requires TEAD binding (Figure 2a). Notably, forced induction of YAP1 is able to activate
the genetic program involving proliferation in cells that have exited the cell cycle (i.e.,
adult differentiated cardiomyocytes) [40]. Heallen and colleagues first demonstrated the
important roles of the Hippo pathway in controlling heart size in animal models [41],
taking advantage of several genetically modified mice. To induce the hyperactivation
of YAP1, they used the Nkx2.5-Cre-mediated loss of SAV1, MST1/2, and LATS2 Hippo
components. This genetic background produced a thickening of compact ventricular
myocardium in favor of cardiomegaly and trabecular expansion in embryonic mouse
hearts [41]. Despite the drastic changes in the myocardium morphology, cardiomyocyte
size was unaffected, while their proliferation rate was significantly upregulated [40,41]. In
this setting, natriuretic peptide A (Nppa) expression, an established marker of trabecular
myocardium, was extensively reduced, which linked the upregulated cardiomyocyte
proliferation with an altered differentiation state [40].

In agreement, mouse hearts with Tnnt2-Cre-mediated embryonic deletion of YAP1
exhibited embryonic lethal cardiac hypoplasia and severely thinned myocardial layers
with reduced cardiomyocyte proliferation [40,42]. Additionally, deletion of YAP1 in the
embryonic heart leads to lethality at E10.5 [43]; when depleted postnatally, increased
myocardial fibrosis, cardiomyocyte apoptosis, and decreased cardiomyocyte proliferation
occur [42,44].

By using a different approach, or the endocardial-specific loss of YAP1 and TAZ
(Nfatc1-IRES-Cre), Artap and coworkers found improper myocardial formation, the first
cause of postnatal lethality in these transgenic animals. YAP1/TAZ absence in the my-
ocardium resulted in a significant downregulation of neuregulin 1 (Nrg1) expression, which
is an important endocardial factor that expresses the cell surface ligand ephrin and orches-
trates myocardium differentiation/phenotype [45]. To demonstrate the specificity of the
effects on Nrg1 mediated by the presence/absence of YAP1, it has been shown how YAP1
can bind to the promoter sequences of Nrg1 and activate ErbB signaling, which is critical
for the function of myocardium development [45] (Figure 2a).
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Figure 2. The Hippo pathway in cardiovascular physiology. (a) YAP1 expression is involved in
cardiac development: the Wnt/β-catenin pathway synergically works with YAP1 to induce cardio
genesis; nuclear YAP1 mediates cell cycle genes (cyclins A2 and B1), prompting cardiomyocyte prolif-
eration; and YAP1 loss inhibits either ErbB or TGF-β-SMAD signaling with consequent improper
myocardial development. (b) Hippo signaling controls autophagy and mitophagy: MST1/2 enhance
autophagic flux through LC3 phosphorylation at Thr50; in contrast, under pathological conditions,
MST1/2 both inhibits autophagy and boosts apoptosis. However, melatonin mediates autophagy
activation through inhibiting MST1/2 phosphorylation and enhancing Parkin-dependent mitophagy.
NDR1 kinase induces autophagy by YAP1 and Beclin1 translocation into the nucleus through XPO1
phosphorylation and modulates chaperone-assisted selective autophagy. Doxorubicin downregulates
YAP1, leading to cardiac damage, which is the cause of activation of both autophagy and mitophagy.
(c) Under pathological conditions, such as I/R, MST1/2 kinases are activated, leading to cardiomy-
ocyte apoptosis; cytosolic YAP1 is stabilized by c-Abl phosphorylation at Tyr357, thus enhancing
the YAP1-P73 interaction to activate apoptosis. (d) Inhibition of upstream kinases of the Hippo
pathway, such as LATS1/2, promotes YAP1 nuclear translocation, thus targeting gene expression for
cell proliferation and heart regeneration. YAP1 cardiac regenerative function is enhanced either by
PITX2, which cooperatively reduces ROS damage, or by the Argn-Dag1 complex, which pulls apart
DCG and improves cardiac function.
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2.1.1. Interaction with Other Pathways in Cardiac Development

In many aspects of cardiac development, the Hippo pathway exerts its functions
by taking advantage of crosstalk with other routes, such as the Wnt/β-catenin and in-
sulin growth factor (IGF) pathways, transforming growth factor (TGF)-β-SMAD and Ras
association family member 1 isoform A (RASSF1A) signaling.

Wnt/β-Catenin Pathway

Similar to the Hippo pathway, the Wnt pathway is crucial in cardio genesis, especially
in cardiac overgrowth. In a mouse model of SAV1 KO, negative regulation of Wnt/β-
catenin by the Hippo pathway has been found in embryonic hearts. YAP1 and β-catenin
physically interact with the Snai2 (regulating epithelial–mesenchymal transition, EMT) and
Sox2 (regulating cardiac repair and regeneration) genes and affect their transcription [41]
(Figure 2a). In support of these findings, many groups of researchers have achieved similar
results by analyzing the gain of function of activated YAP1 in neonatal and perinatal hearts.
Transgenic mice overexpressing the constitutively active form of YAP1 had sustained
levels of β-catenin and were positive for the enhanced fluorescence of phospho-histone
H3 (pHH3) and cardiac troponin, an index of increased myocyte proliferation during
development compared to wild-type (WT) littermates. This phenotype was accompanied
by and sufficient to stimulate an overgrowth of the heart [42]. Additionally, Monroe et al.
reported that completely differentiated cardiomyocyte-specific overexpression of YAP1
restored features of fetal-like cell states by increasing access to embryonic cardiac enhancers
in the adult heart [46]. Influencing cell cycle gene expression, cytoskeletal remodeling, and
Wnt signaling, YAP1 led to enhanced proliferation, resulting in myocardium thickening
and improved cardiac function [46]. Notably, when the expression of YAP1 is driven by
the β-MHC promoter, adult heart size is normalized due to reduced cardiomyocyte size,
although the cell numbers are higher than those of normal controls [42]. Under this specific
YAP1 activation condition, the reason for the interplay between cell number and cell size to
maintain a set heart size is obscure and fascinating.

IGF Pathway

Studies on cardiomyocyte mice overexpressing YAP1 showed enhanced IGF signaling
through the transcription of IGF1 and IGF binding protein (bp2/3) genes [43] and an
increase in Akt phosphorylation. In turn, the inhibition of the IGF pathway and the
loss of β-catenin stabilization have a negative effect on YAP1-dependent cardiomyocyte
proliferation. This information further validates the importance of YAP1 in the activation
of the IGF and β-catenin pathways.

TGF-β-SMAD Pathway

The correlation between the Hippo pathway mediator YAP1 and the TGF-β-SMAD-
2/3/4 pathway, which is critical for the proper development of the atrioventricular cushion,
has been documented. YAP1 loss of function has been found to alter TGF-β-SMAD signal-
ing in endothelial cells and thus impair endothelial mesenchymal transition (EMT) genes,
including Twist1, Snail1, and Slug, indicating the important roles of the Hippo pathway in
the regulation of endocardial/endothelial cells in heart development [47] (Figure 2a).

RASSF1A Signaling

RASSF1A is a member of the Hippo pathway and is ubiquitously expressed and
detected in cardiac tissue [48,49]. RASSF1A has an inhibitory effect on cardiac growth
and cell survival through its intersection with the Hippo pathway. This happens through
various protein–protein bindings at multiple levels: (i) by allowing increased interaction
between MST2 and LATS1 kinases; (ii) by directly binding MST2 [50]; and (iii) by interacting
with a SAV1 member [51]. This, with the final goal of potentiating YAP1 translocation
into the nucleus and its interaction with p73 and its stabilization to increase apoptosis
induction [52] (Figure 2c).
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Moreover, RASSF1A interacts with PM calcium ATPase (PMCA) 4b, mediating the alle-
viation of extracellular signal-regulated kinase 1/2 (ERK), suggesting a further contribution
of RASSF1A in modulating cardiac growth in neonatal rat cardiomyocytes [53].

Development not only involves cardiomyocyte proliferation during fetal stages and
cell hypertrophy in the postnatal heart but other events occur to maintain the correct
balance between cell life and cell death, such as autophagy and apoptosis. Both are also
involved either in transitory stressful conditions or in cardiac pathologies where autophagy
may be activated as a prosurvival mechanism of defense against injury to limit excessive
apoptosis and the loss of cardiac function. As the Hippo pathway is reported to modulate
both pathways, knowledge of its contributions is essential to understand what becomes
deranged in disease.

2.2. Autophagy

Autophagy is a self-digestion process that occurs in response to cellular stresses,
including hypoxia, starvation, infection, and enhanced oxidative stress [54]. Autophagy
targets cytoplasmic components to lysosomes for degradation and for the recycling of
building blocks in response to cell stress [55,56]. During this process, harmful cytosol-
localized components, including invading pathogens, damaged organelles, and protein
aggregates, can selectively be removed to ensure a healthy cell population [55,57].

However, autophagy represents a double-edged sword in the heart. Although it is
primarily a prosurvival mechanism, excessive autophagy can destroy key cellular compo-
nents or autophagic machinery itself, resulting in cell death. Indeed, part of the literature
considers it to be at the crossroads between cell survival and death [58].

Recently, the Hippo signaling pathway has been recognized as a process control-
ling autophagy. A primary role comes from the observations that both MST1 and MST2
contribute to autophagy regulation under resting conditions through the phosphoryla-
tion of LC3 at threonine (Thr) 50 [59] (Figure 2b). MST1/2-dependent autophagic flux
is conserved among taxa and is needed for autophagosome–lysosome fusion to ensure
intracellular bacterial clearance. Accordingly, their loss is accompanied by severe defects
in autophagy [59]. Nonetheless, in the heart and under pathological conditions, the role
of MST1 as an inhibitory mechanism toward autophagy, leading to an accumulation of
p62 and protein aggregates in cardiomyocytes, has been documented [60]. Here, MST1
alters pro-autophagic Atg14L-Beclin-Vps34 complex formation and promotes, in a YAP1-
independent manner, the phosphorylation of Beclin 1 in its Bcl-2 homology 3 (BH3) domain
at Thr108. This phosphorylation cascade can enhance the interaction between Beclin 1 and
the antiapoptotic proteins Bcl-2 and Bcl-2-like protein 1 (Bcl-XL), thus favoring apoptosis
and myocyte dysfunction [60] (Figure 1). These controversial results may be due to the
investigation of two quite different processes: xenophagy and autophagy.

Additionally, a couple of protein kinases belonging to the family of LATS1/2, down-
stream of MST1/2, and named nuclear Dbf2-related (NDR1/2) kinases [61], also play a
major role in the response to cellular stress-inducing autophagy [62] (Figure 2b). It was first
reported that NDR1 phosphorylates YAP1 at the same localization site as LAST1/2 [62,63],
thus modulating its cytosolic-nuclear shuttling inside cells. NDR1 is a protein that con-
tributes to nutrient starvation-induced autophagy by phosphorylating exportin 1 (XPO1)
at serine (Ser) 1055, a nuclear receptor involved in the translocation of proteins from the
nucleus to the cytoplasm. In this case, NDR1-mediated phosphorylation allows the passage
of autophagic regulators, such as Beclin 1 and YAP1, across the nucleus [64]. Furthermore,
it has been demonstrated that NDR1 modulates chaperone-assisted selective autophagy
(CASA), a molecular pathway in which mechanical forces induce a form of autophagy
that targets the filamin protein. It is orchestrated by the CASA complex, which is com-
posed of mutual interactions of HSP70, Synaptopodin 2, Heat Shock Protein Family B
(Small) Member 8 (HspB8), BAG Cochaperone 3 (BAG3), and the ubiquitin ligase CHIP [65]
(Figure 2b).
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Additionally, melatonin is known to regulate the autophagic process in different
ways [66]. One of them acts through the MST1/SIRT3 signaling pathway; indeed, melatonin
is able to prevent MST1 phosphorylation and elevate the levels of Beclin 1, LC3-II, and
ATG5 [67]. These molecular pathways appear to be interconnected when melatonin failed
to induce cardioprotective effects in transgenic MST1 KO mice [67]. Melatonin induces
autophagy in the heart by suppressing the MST1-mediated cascade [67].

Mitophagy

Mitophagy is an autophagic response that specifically targets damaged mitochondria;
it plays a pivotal role in mitochondrial quality control and protects the heart from patho-
logical stress through multiple pathways [68–70]. Among those that are dependent on
the Hippo pathway, Parkin-dependent mitophagy activation upon MST1 suppression [68]
emerges as a crucial protective step in some types of CMs to remove dysfunctional and
harmful mitochondria [71] (Figure 2b). This finding has been further confirmed recently
by Shang et al. in a lipopolysaccharide (LPS)-induced septic cardiomyopathy model in
which MST1 deletion resulted in an upregulation of mitophagy through Parkin, thereby
protecting mitochondria from LPS-dependent alterations and cell death [72].

Additional proof regarding the beneficial effects of YAP1 activation in the heart comes
from the analysis of mitophagy when YAP1 is depleted. In the absence of YAP1, exces-
sive mitophagy led to a reduction in the expression of complexes I–IV of the electron
transport chain (ETC) and contributed to insufficient ATP generation [73]. Furthermore,
cellular oxidative stress and the suppression of several mitochondrial genes prompted
mitochondrial-mediated apoptosis [74].

2.3. Apoptosis

Apoptosis is a fundamental process with the aim of removing useless or damaged
cells during development and preserving organism homeostasis [75,76]. The Hippo
pathway and signaling components are well recognized as fundamental regulators of
apoptosis [7,77,78]. In Drosophila, the “on” state of the Hippo pathway is required for
inactivating the transcriptional coactivator Yki; a failure in doing so results in uncontrolled
tissue overgrowth for defective apoptosis [7,77,79]. In contrast, when Yki is activated, it
promotes growth by stimulating cell proliferation and inhibiting apoptosis. The mechanism
through which it achieves this was partially elucidated by Thompson and Cohen in 2006.
They showed that Yki can promote the expression of bantam, a microRNA known to be
a regulator of both proliferation and apoptosis [80]. When bantam is overexpressed, it
rescues cells from apoptosis, thus mimicking Yki activation, and can promote growth in
cells expressing decreased levels of Yki. Conversely, deletion of bantam blocks Yki-driven
overgrowth [81,82]. Hence, these results highlighted the role of the Hippo pathway in the
regulation of the expression of bantam to control tissue growth in Drosophila.

In the same organism, apoptosis is also mediated by the Yki/Scalloped complex, which
promotes the transcription of the inhibitor of apoptosis (IAP) Diap-1 [83,84], a member
of the IAP family and known to be an important modulator of apoptosis in developing
Drosophila tissues [85,86]. Specifically, Diap-1 inhibits the Drosophila caspases Dronc and
DrICE. Therefore, the enhanced Yki-dependent transcription of Diap-1 functions as a
powerful anti-apoptotic mechanism that promotes tissue overgrowth.
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More focused on the cardiac field and mammals, the role of the Hippo components
in apoptosis has mainly emerged when analyzing pathologic phenotypes. For example,
MST1/2 kinases are known to be activated by various apoptotic stimuli even before their
role in the Hippo pathway was elucidated [87]. Among them, oxidative stress is considered
one of the most relevant insults that trigger MST1/2 activation. Ischemia/reperfusion
(I/R) is recognized as one of the most common injuries to human hearts that leads to
cardiomyocyte death predominantly following ROS overproduction [88]. Accordingly, the
potential regulation of MST1/2 by I/R-induced ROS and the role of MST1/2 in myocardium
injury have been largely investigated [49,89,90]. Zi and coworkers revealed that MST2 KO
results in a protective effect in the heart under pressure overload (PO) stress. MST2 KO
mice also displayed less apoptosis and fibrosis after transverse aortic constriction (TAC)
stimulation [91]. Similarly, inhibition of MST1 prevented cardiomyocyte apoptosis and
protected against cardiac dysfunction following myocardial infarction (MI) [90]. In line with
this finding, overexpression of MST1 led to harmful excessive apoptosis [89]. Furthermore,
overexpression of dominant-negative MST1 in mice leads to reduced infarct size after MI
and hence decreased cardiomyocyte apoptosis [92].

The pro-apoptotic function of MST1/2 is also stimulated by RASSF1A through a
noncanonical mechanism, resulting in the inhibition of Bcl-XL [93] (Figure 1). Interestingly,
in cardiomyocytes, it has been reported that increased RASSF1A expression activates MST1
to inhibit cell growth and promote apoptosis. Nevertheless, in cardiac fibroblasts, RASSF1A
prevents cell proliferation while inducing apoptosis through MST1, thus highlighting an
opposite effect between both cell types [94] (Figures 1 and 2c).

Beyond the role of RASSF1A in MST1 activation, it has also been reported that neurofi-
bromin 2 (NF2) is responsible for MST1 activation in cardiomyocytes. Indeed, the activation
of NF2 by oxidative stress induces complex formation between MST1 and LATS2, which
promotes MST1 activation during I/R. NF2 conditional KO mice showed significantly
smaller infarcts with diminished cardiomyocyte apoptosis and improved heart function
after I/R [95]. This evidence suggests that endogenous MST1 is an important mediator of
apoptosis between physiology and pathology.

Nonetheless, increasing evidence suggests a dual role for YAP1 in mammals. Indeed,
it can both induce and suppress apoptosis. On the one hand, the pro-apoptotic activity
of YAP1 is ascribed to its ability to activate p73 (a member of the p53 family) [96] and
induce the expression of pro-apoptotic components of the Bcl-2 family [52]. Interestingly,
Levy and coworkers reported that in response to DNA damage, the tyrosine kinase c-Abl
directly phosphorylates YAP1 at Tyr357, thus stabilizing it. This event increases the nuclear
interaction of YAP1-p73 to activate the apoptotic program [97] (Figure 3c).

In addition, YAP1 and TAZ can also protect the cell against anoikis, and the inactivation
of YAP1 mediated by LATS1/2 helps drive this type of cell death [98,99]. It is now becoming
increasingly clear that the Hippo pathway has an important, evolutionarily conserved role
in the regulation of the apoptotic response.
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Figure 3. The Hippo pathway in cardiac disease. (a) In myocardial infarction, the Hippo pathway is
upregulated. Overexpression of MST1 activates mitochondrial fragmentation via JNK-DRP1, enhanc-
ing cardiomyocyte apoptosis and cardiac fibrosis. In contrast, its deletion activates mitophagy via
MAPK/ERK-CREB. Green arrow dashed lines indicate cardioprotective treatments to turn off the
Hippo pathway. (b) The activation of upstream kinases leads to the downregulation of mitochondrial
genes and the upregulation of cardiomyocyte apoptosis, ultimately leading to lethal Dilated CM. Ar-
rhythmogenic CM is characterized by adipogenesis activation, which is secondary to overexpression
of NF2 and upregulation of upstream kinases. (c) Heart failure exhibits overexpression of RASSF1A,
enhancing phosphorylation of MST1 and consequently YAP1 cytosolic retention. Upregulation of the
Akt/FOXO3 pathway inhibits MST1 activation; thus, YAP1 translocates into the nucleus, leading to
cardiac hypertrophy. Additionally, nuclear YAP2 induces cell proliferation and hypertrophy via Akt1
signaling. MST2 overexpression also induces cardiac hypertrophy via the Raf1-ERK1/2 pathway but
not through Hippo signaling. SAV1 deletion shows a positive feedback cycle of YAP1/TEAD-OSM,
which exacerbates cardiac injury after PO.
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3. The Hippo Pathway in Cardiac Diseases

As many cardiac diseases are leading causes of death in the world and the heart
is an organ that is unable to self-repair after insults, it is crucial to establish adjuvant
cardioprotective therapies in addition to the current clinical practice. Being in the middle
of many prosurvival mechanisms and modulating both autophagy and apoptosis, the
Hippo pathway is considered an important field of research for cardio protection. In the
following sections, we considered the three most important phenotypes of cardiac diseases:
myocardial infarction (MI), cardiomyopathy (CM), and cardiac hypertrophy (CH), which
are considered risk factors for heart failure (HF) (Figure 3).

3.1. Myocardial Infarction

MI is a disease generated by an impairment of blood flow (including oxygen supply)
due to an obstruction of one or multiple coronary arteries, which leads to cardiomyocyte
damage and death. The current gold-standard therapy for MI is mechanical reperfusion;
paradoxically, this leads to further tissue damage called ischemia/reperfusion injury (IRI).
Several processes concur with this phenomenon and include ROS overproduction, inflam-
mation, and mitochondrial dysfunction [100].

Mimicking MI both in vitro and in vivo led to the identification of a lower amount
of nuclear YAP1 (Figure 3a). Although an increase in MST1/2 [89,90], SAV1 [101], and
LATS1/2 [102] transcripts has been found after hypoxia, IRI triggered a drop in the levels of
nonphosphorylated MST/LATS proteins [103]. In the same context, apoptotic stimuli, such
as caspase-dependent cleavage, activate MST1 and further control myocyte death through
apoptosis [89]. Mechanistically, one molecular pathway in which MST1 is involved is
enhanced mitochondrial fission via the JNK-Drp1 pathway [104]. Increased mitochondrial
fission was accompanied by the inhibition of mitophagy due to a concomitant decrease
in FUNDC1 expression [105]. Accordingly, the in vivo cardiac-specific overexpression of
MST1 dominant-negative (MST1 K59R) revealed cardio protection with reduced infarct
size [89,90]. Additionally, MST1-knockout cardiomyocytes were protected from injury by
the effect of MST1 on sustaining mitochondrial homeostasis, ROS production, mitochon-
drial membrane potential, and mPTP opening. This genotype preserved the activation
of FUNDC1 via the MAPK/ERK-CREB pathway with a protective role in maintaining
mitochondrial homeostasis through mitophagy [105].

From these findings, MST1 (and with him the Hippo pathway) acts at multiple levels
of mitochondrial function following I/R, impairing several mechanisms of quality control.

Therapies to Increase Nuclear YAP1 to Counteract IRI

In 2019, Khan K. and coworkers investigated the effects of the constitutively active
form of YAP1 in a model of human ventricular cardiomyocytes subjected to hypoxia and
reoxygenation. YAP1-induced expression first reduced apoptosis, prevented hypertrophy,
and attenuated ROS generation during reperfusion [103]. Second, it contributed to the
activation of Wnt signaling, strengthening the beneficial effects. One possible therapy for
the efficient induction of YAP1 nuclear expression may be AAV9-based gene therapy, which
has already been reported to counteract the activation of the Hippo pathway [44,101,106]
(Figure 3a).

A second strategy is suggested by some cardioprotective compounds that are known
to act synergistically with the Hippo pathway. For example, Echinatin (Ech), a component
of the traditional herb Glycyrrhiza, inhibits MST1, LATS1, and YAP1 phosphorylation both
in vitro and in vivo, favoring YAP1 translocation into the nucleus and its activation [102].
Melatonin has been deeply studied for its protective role after I/R, and its activity has
been linked to the activation of OPA1-related mitochondrial fusion with the involvement
of the Hippo pathway, although the precise mechanism by which YAP1 governs OPA1
expression is not yet clear [107]. Through chemical screening, a promising drug named
TT-10, acting on YAP1-TEAD1 activity and the Wnt/B-catenin signaling pathway, improved
the cardiac function of mice after MI, acting on cell proliferation [108] (Figure 3a). Subse-
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quent studies on human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes
(hiPSCMs) confirmed the effects of this drug on the cell cycle and division without side
effects on functional or structural genes of these cells, enhancing its potential role in clinical
treatment [109].

Although numerous studies have reported beneficial effects of the inactivation of the
Hippo cascade in cardiomyocytes following MI, it should be reported in a very recent work
in which YAP1 and TAZ assumed an opposite function in cardiac fibroblasts, inflammatory
responses, and profibrotic pathways that worsen the phenotype of the remodeled heart
were promoted [110].

3.2. Cardiomyopathies

CMs are a heterogeneous group of heart diseases that affect structural and functional
myocardial function. A variety of phenotypes and etiologies are involved; therefore, a
specific classification is constantly evolving. Signs and symptoms mostly overlap, and they
possibly share molecular mechanisms and gene mutations [111]. Among them, dilated
(DCM) CM is an idiopathic CM that presents as HF, which is secondary to left ventricular
dilatation and systolic dysfunction.

Several studies have suggested the activation of the Hippo pathway and the conse-
quent YAP1 inhibition before DCM onset. Transgenic mice with cardiac-specific overexpres-
sion of MST1 showed an increase in cardiomyocyte apoptosis, which led to DCM. However,
these cardiac myocytes were smaller, and the mice died within 2 weeks [89]. With the same
phenotype, a mouse model of conditional cardiac-specific deletion of YAP1 exhibited a high
level of apoptosis. These mice died within 20 weeks due to lethal DCM [44]. Accordingly, a
murine model of LATS2 cardiac overexpression also showed DCM [95].

Growing evidence indicates a connection between the Hippo pathway and mito-
chondrial dysfunction related to DCM [112]. Loss of TEAD1 leads to lethal acute-onset
DCM [113,114]. Using a tamoxifen-inducible adult CM-specific TEAD1 mouse model,
the authors first demonstrated that TEAD1 loss impaired sarcoplasmic reticulum calcium
homeostasis due to loss of SERCA2a activity, which contributed to the impairment of
excitation–contraction coupling. Moreover, in their last work, they highlighted how the
loss of TEAD1 downregulated mitochondrial genes, such as mitochondrial ETC, and genes
encoding for enzymes in fatty acid oxidation. Accordingly, another independent study
using a transgenic MST1 mouse model exhibited the downregulation of several nuclear
DNA (nDNA)-encoded mitochondrial gene sets [115]. Mechanistically, a reduced physical
interaction between YAP1-TEAD1 led to a repression of activation of nuclear transcription
factors of mitochondrial genes [74] (Figure 3b).

Some data suggest a role for Hippo signaling in the pathogenesis of arrhythmo-
genic CM. This is characterized by right ventricular cardiomyocyte replacement with
fibro-adipocytes and is, therefore, also known as arrhythmogenic right ventricular car-
diomyopathy. Mutations in several genes encoding intercalated disk proteins have been
detected in human patients with arrhythmogenic CM [116]. Chen et al. observed overacti-
vation of NF2 both in human samples and mouse models. NF2 is an upstream molecule
that triggers phosphorylation of the Hippo kinases (MST1/2, LATS1/2, and YAP1), further
suppressing YAP1-TEAD1 transcription gene activation and enhancing adipogenesis [117]
(Figure 3b).

3.3. Hypertrophy and Heart Failure

Hypertension, cardiac hypertrophy, diabetes, MI, and CMs are all risk factors for HF.
As we found that the Hippo pathway was more or less involved in all these pathological
states, it is reasonable to think that it continues to be involved in HF. Accumulating evidence
has shown that Hippo pathway activation occurs during HF by inducing cardiac myocyte
apoptosis and maladaptive phenotypes.

Del Re et al. showed that in the stressed heart, MST1 is activated endogenously when
phosphorylated by RASSF1A, which results in significant upregulation [94]. In this scenario,
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RASSF1A, as an upstream and interacting member of MST1, exhibits deleterious functions
for the heart, and its downregulation improved cardiac workload (Figure 3c).

One of the recognized methods to induce cardiac hypertrophy and HF in animal
models is TAC [118]. LATS2 is an endogenous regulator of cardiac hypertrophy during
TAC [95]; in detail, Matsui et al. suggested that in response to PO, there was an upregulation
of endogenous LATS2, which increased cardiomyocyte MST1-mediated apoptosis and
inhibited adaptive cardiac hypertrophy [95]. Accordingly, the expression of a dominant-
negative LATS2 inhibited cardiac myocyte death triggered by TAC. Even MST2 has been
seen to induce cardiac hypertrophy after PO when it is overexpressed. However, its effect
seems to be exerted not through YAP1 but upon activation of Raf1-ERK1/2 [91].

Since upstream kinases are activated during HF and promote cardiomyocyte apoptosis
and reduce cell proliferation, it has been questioned whether upregulation of the nuclear
effector of the Hippo pathway, YAP1, could also have a cardioprotective effect in this field.
Several studies have tried to elucidate its role in cardiac hypertrophy and HF; however,
its function seems to be complex and context-dependent. Heterozygous cardiac-specific
YAP1-KO mice exhibit increased cell apoptosis and fibrosis; however, adaptive cardiac
hypertrophy is attenuated after MI [44] and acute PO [119]. Wang et al. showed that
in human heart samples from patients with hypertrophic CM and mice following TAC,
phosphorylation at Ser127 of YAP1 is reduced. Hence, increased nuclear expression of YAP1
induces transcription of hypertrophic genes [120]. Moreover, they also found a concomitant
reduction in the levels of MST1 by the Akt/FOXO3 pathway. In contrast, Lin et al. found
that adult mice with cardiac-specific activation of YAP1 had a cardioprotective role in the
long term after MI. In this context, YAP1 seems to exert its protective role by promoting
cardiomyocyte proliferation rather than inducing compensatory cardiac hypertrophy [106].

Recently, Song et al. highlighted the role of YAP2 in myocardial hypertrophy. They
confirmed in vitro, in vivo, and in human samples that YAP2 overexpression induces
cardiomyocyte hypertrophy. Mechanistically, they showed that YAP2 exerted its function
through activation of Akt, thus promoting cell proliferation and hypertrophy [121]. These
results indicated that either the inhibition of the Hippo pathway or upregulation of YAP1
led to cardiomyocyte proliferation, triggering cardiac hypertrophy. However, a new work
by Sadoshima’s group underlines that prolonged activation of either YAP1 or the chronic
suppression of the upstream pathway is detrimental in the presence of long-term PO [122].
The cardiac-specific SAV1-KO mouse model under 12 weeks TAC exhibited a positive
feedback cycle of YAP1/TEAD1- OSM (oncostatin M), which exacerbated cardiac injury
(Figure 3c). Certain levels of YAP1 are necessary to induce adaptive cardiac hypertrophy
after PO. However, when it is long-term overexpressed, it becomes detrimental for the
heart and leads to HF [47].

The extracellular matrix (ECM) provides structural support to tissues, and in the heart,
it plays a pivotal role in its physiology; in the development of HF, the ECM is deranged
and remodeled, deviating substantially from its original complexity. Major phenotypes
are represented by cardiac fibrosis, which mainly alters ECM structure. As mentioned
in the introduction, ECM is a place where many stimuli affecting the Hippo pathway
reside. A seminal paper by Perestrelo et al. explained how mechanical stress caused by
MI on ECM activates and sustains mechanosensitive YAP1 in cardiac fibroblasts, which
together with TGF-β1, induces profibrotic cardiac remodeling in a positive loop [123]. It
should be noted that pericytes ameliorate cardiac function and enhance cardiac repair after
myocardial ischemia via attenuation of cardiac remodeling, alleviation of inflammatory
responses, and induction of angiogenesis; however, after chronic ischemia and in failing
hearts, they display altered mechanotransduction properties characterized by reduced
expression and translocation to the nucleus of YAP1 and the consequently decreased
transcription of angiogenic factors, such as dimethylarginine dimethylaminohydrolase 1
(DDAH1), connective tissue growth factor (CTGF), and cysteine-rich angiogenic inducer 61
(CYR61) [124].
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In the context of pathological ECM remodeling associated with cardiac fibroblast
differentiation into myofibroblasts, the YAP1/TAZ pathway overlaps with other molecu-
lar routes, such as those indicated by TGF-β and WNT proteins [11,125–127]. Although
crosstalk among these pathways in cardiac physiology has been reported, the interpath-
waycommunication during cardiac fibrosis evolution has only recently been highlighted.
Recent work by Mia et al. demonstrated that YAP1 mediates fibroblast activation by acting
downstream of both WNT and TGF-β [110], modulating fibroblast proliferation, and polar-
ization of macrophages to become proinflammatory in the cardiac zone of interest. Another
study highlighted an upregulation of endogenous YAP1 in cardiac fibroblasts from hu-
man heart samples with HF, which was accompanied by a downregulation of LAST1 [128].
Accordingly, conditional deletion of LAST1/2 results in myofibroblast transformation [129].

4. Cardiac Regeneration

While lower vertebrates retain a remarkable capacity for cardiac regeneration through-
out life [130–132], the mammalian heart maintains its regenerative capability only during
early life and loses this peculiarity postnatally [133–135]. Therefore, as we have seen
previously, loss of cardiomyocytes after heart injury leads to pathological consequences,
eventually leading to sudden death [136].

In this context, the Hippo cascade has been recently found to be of primary interest in
supporting cardiac regeneration. Indeed, either the repression of Hippo kinase modules
or YAP1 activation significantly provides an attractive therapeutic target for promoting
cardiomyocyte renewal and cardiac regeneration in the adult heart [78,137].

Increasing evidence supports the idea that the Hippo signaling pathway is a critical
barrier to cardiac regeneration. Interestingly, YAP1 is not only essential for cardiomyocyte
proliferation during mouse embryonic cardio genesis [40,43] but is also crucial for adult
cardiomyocyte homeostasis [44]. As seen in cardiac development, if analyzed in the adult
heart, the activation of YAP1 may represent an effective strategy for promoting heart
regeneration after injury. Indeed, YAP1 induces the expression of genes related to cell
proliferation, DNA synthesis, and cytoskeletal remodeling [138] (Figure 2d). Furthermore,
YAP1 stimulates IGF-1 and Akt signaling to reduce cardiomyocyte apoptosis [44]. Hence,
in response to heart injury, YAP1 could stimulate the onset of all phenotypes that allow
cardiomyocytes to enter a cardiac regeneration program.

Heallen and coworkers demonstrated how the shutdown of the Hippo cascade (by
either in vivo SAV1 inactivation or LATS1/2 inhibition) in postnatal cardiomyocytes pro-
moted efficient heart regeneration after cardiac apex resection and subsequent myocardial
infarction (MI) in terms of cell proliferation and functional heart recovery [139]. Likewise, in
mice with established ischemic HF, cardiomyocyte-specific deletion of SAV1 3 weeks after
MI resulted in increased cardiomyocyte proliferation, scar size reduction, and enhanced
heart function [140]. Moreover, it was reported that adeno-associated virus 9 (AAV9)-YAP1
delivery (the human constitutive active form YAP1S127A) in mouse cardiomyocytes pro-
moted cardiomyocyte division by boosting the cell cycle, as detected by the 4/5-fold higher
presence of pHH3 and 5-ethynyl-2 deoxyuridine (EdU) uptake; this was sufficient to reduce
scar size and to increase cardiac function in terms of ejection fraction and the attenuation of
cardiac remodeling (hypertrophy) after MI, without signs of apoptosis [106].

YAP1, once in the nucleus, triggers the transcription of a series of prosurvival genes
that compete for cardiac regeneration. Additionally, it can interact with other molecular
partners to accomplish its fate. For example, Tao G. and colleagues found a functional
interaction between YAP1 and paired-like homeodomain transcription factor (PITX2) in
injured SAV1-deficient hearts [141]. PITX2 mitigates detrimental ROS effects by modu-
lating the main scavenger enzymes and improving the function of ETC components. In
support of this finding, conditional KO of PITX2 in neonatal mouse hearts resulted in an
impaired regenerative response after apex resection, while PITX2 gain of function in adult
cardiomyocytes allowed cardiac repair and function [141].
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In addition to genetic animal models showing regenerative properties after the forced
induction of YAP1 translocation into the nucleus, upstream effectors modulating its physio-
logical translocation also exist. Interestingly, Bassat and coworkers have proven that Agrin
(Agrn), a protein of the extracellular matrix, is one of them. Indeed, its conditional KO in
mouse heart impaired cardiac regeneration after apex resection, as observed by increased
fibrosis and reduced cardiomyocyte proliferation [142]. Moreover, they have also reported
that Agrn interacts with its receptor a-Dystroglycan (Dag1) and promotes disassembly of
the dystrophin–glycoprotein complex (DGC). This event triggers YAP1 translocation to the
nucleus, where it promotes cardiomyocyte proliferation [142]. In accordance with these
findings, Morikawa et al., in 2017, also observed that functional DGC interacts with YAP1
to prevent its nuclear translocation and inhibits cardiomyocyte proliferation [143].

Although the inhibition of Hippo kinases and YAP1 activation have been proven
to stimulate myocardial regeneration after cardiac injury, the long-term consequences of
chronic Hippo pathway shutdown remain to be seen. To the best of our knowledge, long-
term expression (some months) of YAP1 in the heart is accompanied by a slight increase
in fibrosis, no signs of hypertrophy, and no tumor-associated manifestations, but a mild
decrease in cardiac function. It should be seen if the longest periods are well tolerated.

5. Contribution of the Hippo Pathway in Inflammatory States

As inflammation is one of the pathways that significantly drives cardiac diseases
together with mitochondrial dysfunctions and ROS production, it deserves a brief summary
from the Hippo pathway point of view. Indeed, intensive research in the last few years
has revealed that Hippo signaling is also involved in the occurrence and progression
of inflammation [144]. Inflammation is a complicated process composed of different
mechanisms [145]; basically, it constitutes a fundamental protective response, but it could
be one of the primary contributors to the pathogenesis of several chronic diseases.

It was pointed out that in Drosophila, Gram-positive bacteria act as extracellular stimuli
of Hippo signaling under physiological settings, leading to a decrease in antimicrobial
peptide secretion and restriction of inflammation [146]. YAP1 and TAZ were reported to
be mediators of many inflammatory processes [147,148]. Moreover, both NDR1/2 and
MST1/2 have also been implicated in inflammation in recent years [149]. The kinase
module influences different important determinants of the immune response, such as
T-cell survival, adhesion, chemotaxis, and proliferation [150]. Apart from directing the
innate immune response, the Hippo pathway components also modulate the adaptive
immune responses in multiple pathological conditions. For example, it has been shown
that YAP1/TAZ expression in the epicardium is essential not only for coronary vasculature
development [151] but also for limiting the inflammatory and fibrotic response during the
post-MI recovery phase through recruitment of Tregs [152]. Furthermore, Ramjee et al.
demonstrated that the loss of YAP1/TAZ in the epicardium resulted in decreased expression
of IFN-γ, a known Treg inducer [153]. After MI stress, a rapid inflammatory response is
activated in the myocardium. This process is necessary to clear debris and promote wound
healing after injury. Nevertheless, excessive inflammation can increase matrix degradation,
cause greater cardiomyocyte loss, augment fibrosis, and worsen heart function. Therefore,
a balanced response is fundamental to providing optimal cardio protection. The role
of the Hippo signaling components in nonimmune cells regulating the inflammatory
response is well established; however, a growing literature is emerging about its functions
in immune cells. Recent studies have revealed that YAP1 is an unexpected amplifier of a
Treg-reinforcing pathway [154], and in macrophages, it aggravates inflammatory bowel
disease, accompanied by the production of antimicrobial peptides and changes in gut
microbiota [155].

Recent works have demonstrated that TAZ regulates T-cell differentiation in both
mouse and human memory CD4+ T cells. TAZ promotes TH17 cell development, a proin-
flammatory subtype that is involved in autoimmunity while attenuating Treg cell produc-
tion [156]. TAZ is directly bound to RAR-related orphan receptor C to promote the TH17
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subset and potentiated autoimmune disease, defining a role as a negative regulator of
adaptive immune responses for the Hippo pathway.

In a recent study, Mia et al. demonstrated that in cardiac fibroblasts, YAP1/TAZ are
essential regulators of macrophage polarization and functions by regulating interleukin 6
(IL6) promoter activity or through the p38-dependent MAPK pathway after MI. In response
to both proinflammatory and reparative stimuli, YAP1 and TAZ expression is increased
in macrophages. Interestingly, their data demonstrate that YAP1/TAZ act as activators in
proinflammatory macrophages (M1 phenotype) while behaving as repressors in reparative
macrophages (M2 phenotype) [157]. Importantly, Hippo signaling impacts adaptive and
innate immune cell functions, modulating both pathogen-triggered responses, such as
myocarditis and sterile inflammation, resulting from injury, such as MI.

6. Conclusions

In some fields of research (i.e., cancer and related inflammatory states), all of the
intricacies of the Hippo pathway have been revealed and its targeting is already a reality
in many of the current anticancer therapies, but the knowledge in the cardiovascular
field is still a mystery with interesting (sometimes controversial) facts that should be
better interconnected. Many findings concerning its relevance in physiology have been
deeply investigated in Drosophila and other similar organisms, but the findings need to
be translated to and confirmed in mammals and humans. The existence of several animal
models with conditional activation/repression of each component of the Hippo cascade is
crucial to further investigate their role in disease and explore possible therapies.
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