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Abstract
Defects of the cystic fibrosis (CF) transmembrane conduc-
tance regulator (CFTR) protein affect the homeostasis of
chloride, bicarbonate, sodium, and water in the airway surface
liquid, influencing the mucus composition and viscosity, which
induces a severe condition of infection and inflammation along
the whole life of CF patients. The introduction of CFTR mod-
ulators, novel drugs directly intervening to rescue the function
of CFTR protein, opens a new era of experimental research.
The review summarizes the most recent advancements to
understand the characteristics of the infective and inflamma-
tory pathology of CF lungs.
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Introduction
CF is a genetic disease caused by mutations of the cystic
fibrosis transmembrane conductance regulator (CFTR) gene,
localized on chromosome 7, which was correctly
predicted as an ion transporter since the gene discovery
[1e3]. More than 2000 CFTR gene variants have been
www.sciencedirect.com
identified so far, a few hundred being confirmed as
disease causing mutations [4*].

In order to provide an operational synopsis of the effects
of such a wide series of CFTR gene variants on CFTR
biology, CFTR mutations have been categorized into six
major classes depending on their main pathologic effects
on CFTR protein, namely, Class I: absence of protein,

Class II: protein trafficking defect, Class III: no func-
tion, Class IV: reduced function, Class V: reduced pro-
tein, Class VI: reduced protein stability [for review see
the study by Bell et al. [5]].

As a result of CFTR protein mutations, CF disease af-
fects the function of several organs, mainly exocrine
pancreas, liver, intestinal tract, salivary glands, male
reproductive organ, sweat glands, being the pathology in
the respiratory tract the main cause of morbidity and
reduction of life expectancy [6*]. Since the milestone of

the CFTR gene discovery in 1989, tremendous progresses
have been made in understanding the basic CF defect.
This allowed to develop and apply novel drugs, termed
"CFTR modulators," which act directly on the mutated
protein by rescuing at least in part its defective function
[7*]. In spite of these exciting therapeutic improve-
ments, which make CF disease entering the era of the
novel CFTR modulator Trikafta [8,9], different ques-
tions remain unanswered on CF lung pathophysiology.
Defective CFTR protein affects ion and fluid
homeostasis in the respiratory mucosa
CFTR protein has been confirmed as an ATP-
dependent, protein kinase A and C regulated, trans-
porter of chloride and bicarbonate [10,11]. These ions
are secreted from the apical membrane of different
kinds of epithelial cells composing the airway mucosa
and submucosa. The cell types that express CFTR gene/
protein is a hot field of research. For example, recent
single cell RNA-sequencing studies revealed CFTR-rich
pulmonary ionocytes [12,13]. Furthermore, more recent
studies on proximal and distal airways in control and CF
airway epithelia suggest that secretory cells (but not

ciliated cells, which had been previously considered as
dominant CFTR-expressing cells [14]) are the domi-
nant CFTR-expressing cell type [15**,16]. In addition
to direct ion transport, CFTR inhibits the activation of
the epithelial sodium channel (ENaC) [17] and
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regulates other chloride channels [18]. Because of
defective chloride and bicarbonate secretion and
excessive sodium reabsorption, it is logically expected
that the airway surface liquid (ASL) residing on top of
the apical membranes of the epithelium of the CF air-
ways should be altered. However, the equilibrium be-
tween different phases of fluid secretion and absorption
made this issue extensively debated for years, with

contradictory results due to the complexity of the in vivo
measurements of the physic-chemical parameters of
ASL in CF patients [19]. Although still under scrutiny,
the prevalent consensus now considers that the ASL of
CF lungs is dehydrated and more acidic in respect to
non-CF ASL [20].
Impaired ASL homeostasis affects the
biology of CF airway mucosa
The ASL consists of a hydro-gel mucus layer with gel-
forming mucins constituting a mesh that traps dust
and microorganisms. These are rapidly transported from
distal airways to trachea by ciliary beating, the muco-
ciliary clearance being considered the very basic innate
defense mechanism in the lungs. The pH and the
relative content of mucins and water in ASL is critical

for the viscosity of the mucin hydrogel [20]. In CF,
dehydration reduces the periciliary liquid and increases
the viscosity of the mucin hydrogel mesh, which reduces
the frequency of the muco-ciliary beating mechanism
[21**]. Besides the reduced hydration, bronchoalveolar
lavage fluid (BALF) obtained from young CF patients
revealed increased concentration of mucins (MUC) 5B
and 5AC [22**], although it is not clarified whether this
depends on the primary CFTR defect or it results from a
mechanism secondary to the advanced stages of the CF
lung pathology. Interestingly, markers of inflammation
were found elevated either in presence or in absence of

bacterial infection [22**]. Thus, altered physicochem-
ical properties of mucus in CF ASL are considered an
upstream initiating, and later amplifying, pathogenic
mechanism in between defective ion transport and the
infective/inflammatory process [21**,22**].

The onset of CF lung disease has been demonstrated
since the early months of the life of CF infants, even in
the absence of overt respiratory symptoms, as the
bronchioles of CF infants has been found filled with
polymorphonuclear neutrophils (PMN) [23]. Lung

disease starts from a clinically asymptomatic phase that
is followed by recurrent, and lately, chronic bacterial
infections, associated with inflammation, conditions
leading to damages of the bronchial walls, with dilations
(bronchiectasis) filled with mucopurulent sputum. A
huge number of microorganisms and PMNs in lumen
constitutes an infective/inflammatory condition leading
to progressively severe obstructive respiratory insuffi-
ciency [23]. CF lung pathology could be summarized
with the two key points of infection and inflammation:
Current Opinion in Pharmacology 2022, 64:102214
1) recurrent infections with Haemophilus influenzae in
childhood and with Staphylococcus aureus (S. aureus) in
early life are progressively substituted in adulthood with
recurrent infection with Pseudomonas aeruginosa
(P. aeruginosa), which lately chronically infects CF air-
ways; 2) CF cellular and humoral immune defenses, that
are inefficient in clearing bacterial infections, mount an
"exaggerated" inflammatory response characterized by a

huge amount of PMNs filling the airway lumen. Both
recurrent and chronic infection and exaggerated
inflammation contribute to bronchial wall tissue damage
and progressive airway flow obstruction, leading to pro-
gressively severe respiratory insufficiency.

CF airways mucosa as a pro-infective milieu
As mentioned, impaired muco-ciliary clearance and
mucus abnormality is widely believed to constitute the
favorable milieu for CF lung infections [21**,22**].
Although CF infections are polymicrobial along the
whole life, including H. influenzae, Stenotrophomonas
maltophilia, Achromobacter xylosoxidans, Nontuberculous
mycobacteria, different fungi (e.g. Aspergillus and Candida
species) and viruses (e.g. rhinovirus, influenza virus,
respiratory syncytial virus) and other microorganisms,
the main attention in clinics and research has been
focused on S. aureus and P. aeruginosa, considered the

major infectious effectors of CF lung tissue damage
[24]. Predominance of S. aureus in lung expectorate
early in life of CF patients has been related to a CF-
specific defective immune response dependent on
reduced pH in CF ASL, which favors survival of this
bacterium [25]. In CF adults, P. aeruginosa becomes the
predominant infection agent overtaking S. aureus,
possibly by inducing the host secretion of the bacteri-
cidal enzyme type-IIA-secreted phospholipase A2,
which kills S. aureus with limited lytic effects on
P. aeruginosa [26], although coexistence of both micro-

organisms persists in CF adults [27].

The reason why P. aeruginosa, a ubiquitous environ-
mental opportunistic microorganism causing disease
almost only in immunocompromised individuals, be-
comes the predominant infectious agents in CFadults is
still unknown, unless we consider the general hypoth-
esis of CF as a mucosal immunodeficiency condition
[28]. In this respect, it has been reported the association
of the tumor suppressor phosphatase and tensin homo-
log deleted in chromosome 10 (PTEN) with defective

CFTR, the latter acting as scaffold protein for PTEN.
The CFTR-PTEN association induces mitochondrial
metabolic dysfunction by increasing the release of
itaconate and succinate, a condition promoting a selec-
tive advantage for P. aeruginosa infection in CF
[29,30**]]. This mechanism could also be favored by
the inhibition of the bacterial killing of CF macrophages
exposed to the protease LasB, one of the virulence
factors released by P. aeruginosa [31].
www.sciencedirect.com
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Evolution and adaptation of P. aeruginosa
infection
Free flowing flagellated and piliated, so termed "wild
type" or "environmental" or "planktonic", P. aeruginosa
strains start infecting CF patients at a median age of one
year [32]. During childhood, P. aeruginosa infections are
recurrent and in principle antibiotics at high doses could
eradicate them. Soon or later, P. aeruginosa infecting CF
adults undergoes several genomic mutations leading to a
flagellum- and pili-deprived nonmotile "mucoid"
phenotype, an evolution intervening in CF patients at
the median age of thirteen years [32]. Bacterium
mutated with mucoid phenotype lives much better

protected than wild-type planktonic one from mucosal
anti-microbial peptides, innate and adaptive host
immune system, and antibiotics while encapsulated in
biofilms. The protecting effect on P. aeruginosa is
thought to be dependent on at least three major
exopolysaccharides produced by the bacterium itself,
namely alginate, Pel and Psl, which sustain the antimi-
crobial tolerance [33]. Different a condition which
practically impedes bacterial eradication and is consid-
ered a true irreversible chronic infection. The role of the
huge amount of reactive oxygen species (ROS) and
Figure 1

Evolution of bacterial infection in CF lung. The basic defect of CFTR lead
infections since the early years of life of CF patients [17**,18**]. (a) During child
becoming progressively prevalent, possibly due to the acidic ASL environmen
airways since the early years of life, eradicates the S. aureus infection, possibl
(c) During adulthood, the genome of wild type P. aeruginosa undergoes a ser
ASL, loosing flagellum and pili and secreting alginate to build a biofilm, inside
antibiotics [32]. The mutant P. aeruginosa recurrent infection thus evolves as a
strains further evolve towards revertant nonmucoid strains expressing flagellu
therefore harbor at the same time P. aeruginosamucoid strains in biofilms, non
a "leopard-like skin heterogeneous model" of infection and inflammation [34**

www.sciencedirect.com
redox unbalance in CF airway mucosa in producing a
series of mutations in the genome of P. aeruginosa, lead-
ing to mucoid phenotype, has been extensively studied
[for summary see the study by Malhotra et al. [34**]].
Relevantly to pathophysiology and pharmacology,
entering the irreversible stage of the chronic P. aeruginosa
infection does not mean that all CF bronchial tree is
irreversibly and exclusively infected by the mucoid

strains growing in biofilms. Actually, mucoid P. aeruginosa
is known since long time to be instable in CF lung in vivo
and to revert frequently back to planktonic form,
because of accumulation of new genomic mutations.
The switch from mucoid to nonmucoid, and again back
to mucoid phenotypes, is assumed as a frequent process
in vivo CF lung [35e37]. Interestingly, as recently re-
ported by analyses of BALF obtained selectively from 6
pulmonary lobes of CF patients, different lung areas are
infected at the same time by mucoid or by planktonic
non-mucoid, again by mucoid/non-mucoid mixed strains

[38**], suggesting to us a "leopard skin spots" hetero-
geneous model of P. aeruginosa infection in adult C6F
lungs (Figure 1). Importantly, the heterogeneous type of
P. aeruginosa phenotypes, co-existing in the same lung of
chronically infected CF patients, leads to different
ing to altered ASL with more viscous and acidic mucus favors bacterial
hood, recurrent bacterial infections are mainly polymicrobial with S. aureus
t [25]; (b) During adolescence, P. aeruginosa, which is present in CF
y by action of a specific phospholipase providing selective advantage [26];
ies of mutations, possibly dependent on the CF pro-oxidative milieu of the
which it results more protected from the host immune responses and
chronic one, sustained by the presence of mucoid strains. These mucoid
m and pili [34**,35–38]. The lungs of chronically infected CF patients
mucoid revertant with flagellum and pili and mixed phenotypes, resembling
]. Graph created with BioRender.com.
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degrees of inflammatory/immune response among the
different lobes [38**]. These findings contradict the
scenario of a topographically homogeneous infective
phenotype, corresponding to a homogeneous immune
response in whole CF lung. In addition, the heteroge-
neity of chronic P. aeruginosa infection seems to best fit
the previously advanced hypothesis that exacerbations,
periodically affecting chronically infected CF patients

and severely worsening their lung function, reflect most
likely the spread of the disease from more infected to
less/not-infected areas of the same lung, rather than
being dependent on an intensification of the bacterial
load [39]. This hypothesis on the main mechanism of
CF infective exacerbations is, in our opinion, more easily
explained by the co-presence of motile, planktonic
bacteria, not only mucoid bacteria strictly confined in
biofilms firmly adherent to bronchial walls.
Figure 2

Key features of the host immune response in CF airway mucosa. Graphica
airways disease. 1) CF bronchial epithelium exposed to pathogen activated m
cytokines (TNF-a, IL-1b, IL-6) and chemokines recruiting PMNs (IL-8, GRO-a/g
exclusively, through MyD88-dependent toll-like receptors 2, 4, and 5 signaling
P. aeruginosa and their continuous stimulation by bacterial PAMPs induce m
balance the redox equilibrium of CF ASL towards a pro-oxidative status [41],
derived from Neutrophil Extracellular Traps (NETs) and PMN hypoxic necrosis
CF PMNs exposed to continuous bacterial stimulation release a series of pro
damage and dilation resulting in bronchiectasis, anatomical niches favoring ba
present defective P. aeruginosa killing and defective removal of dead neutroph
homeostasis [47]. Moreover, they contribute to release of ROS in CF ASL and
infection [29–31,48–50]; 6) as a result of M1 preferential polarization of CF ma
inflammatory cells are prevalent of Treg cells [54–56]. Graph created with Bio
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The CF inflammatory response is ineffective
and harmful
Whether the innate immune inflammatory response in
CF lungs precedes or follows the bacterial infection has
been debated for years. Although contradictory reports
are presented, which leave this issue still unsettled,
bacterial infection intervenes very early in CF life,
either inducing or amplifying a series of host inflam-
matory responses modulated by different mucosal cell
components [40,41] (Figure 2). CF mucosal epithelium
is not a simple physical barrier to protect the airway
mucosa from penetrating microorganisms but is known
to orchestrate the strong chemotactic process driving

PMNs in the CF lumen [42]. The huge amount of
PMNs filling CF mucosa are inefficient in avoiding
P. aeruginosa chronic infection but their presence,
continuously activated by bacterial products, results in a
l summary of the hallmarks of the mucosal host response in advanced CF
olecular patterns (PAMPs) activates the expression of pro-inflammatory
) and mononuclear immune cells (RANTES, IP-10, MIP-1a) mainly, but not
[42]; 2) CF PMNs present a defective bacterial killing in respect to

assive release of reactive oxygen species (ROS), which contribute to un-
which affects CFTR protein stability [65]; 3) huge amount of PMN DNA
further worsen the viscosity of CF ASL [44*,45]; 4) besides ROS and DNA,
teases, first of all neutrophil elastase, which contribute to bronchial wall
cterial stasis, thus recurrent bacterial exacerbations; 5) CF macrophages
ils, the latter being a critical process that is necessary to reestablish tissue
are implicated in selecting an environment favoring P. aeruginosa chronic
crophages, a T cell unbalanced pattern has been found, where TH-17 pro-
Render.com.
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series harmful effects, such as: 1) the release of ROS,
contributing to a pronounced pro-oxidative redox un-
balance [43]; 2) the spread of DNA on mucosal surface,
both from PMN necrosis and release of neutrophil
extracellular traps, which further increase ASL viscosity
and are associated with lung disease severity [44*]; 3)
the exocytosis of proteases, which contribute to damage
the fibers of the extracellular matrix of the bronchial

walls and to amplify the inflammatory response, with
very limited effect on bacterial killing [45]. Overall, the
presence of a huge number of activated neutrophils is
thought to have a critical role in CF lung pathology, thus
the neutralization of neutrophil elastase or the fine
regulation of recruitment of these cells in the airway
lumen by the chemokine IL-8/CXCL8 are considered
relevant therapeutic targets [46]. Besides neutrophils,
CFTR mutations are implicated in immune functions of
macrophages, which show reduced efficiency in
removing dead neutrophils [47], a critical process to

reestablish tissue homeostasis. Macrophages are gaining
a critical role in further explaining the defective CF host
response to P. aeruginosa and to sustain a proinflammatory
status by preferential polarization to M1 phenotype
[47e52]. Although M1 polarization of macrophages is
mainly applicable to in vitro investigation with limited
translation into in vivo setting [53], a possible conse-
quence of CF macrophage dysfunction and M1 polari-
zation has been also suggested as regards an imbalance
of anti-inflammatory regulation of the adaptive immune
branch, where a reduced Tregs cells presence has been

observed in CF patients and accompanied by preferen-
tial increments of Th-17 cells (the latter actively
involved in PMNs recruitment in CF bronchi [54,55]),
an imbalance that does not seem corrected by CFTR
modulators [56].

Entering the era of the novel CFTR modulator Trikafta,
CF lung pathophysiology should consider not only its
effects on chronic infection and inflammation on
bronchial tissue damage, but also on the efficiency of
rescue of mutant CFTR in CF patients treated with
CFTRmodulators. Several reports consistently indicate

that the rescue by CFTR modulators of the most
common F508del-mutated CFTR protein in bronchial
epithelial cells is strongly reduced by planktonic
P. aeruginosa [57e64], the proposed mechanisms
including quorum sensing [62], LasB protease [63], the
interference with expression of the CFTR scaffolding
protein NHERF1 [59]. In parallel, the ROS abundantly
released in the CF ASL inflammatory milieu, as a result
of activated PMNs by bacterial infections, have been
shown to strongly reduce wild type and F508del-CFTR
expression through a mixed lineage kinase-3 dependent

activation inducing CFTR proteolysis [65]. In contrast,
it has been reported that the supernatant obtained from
www.sciencedirect.com
mucopurulent material (SMM) of CF lungs augments
in vitro the rescue of F508del-CFTR by CFTR modu-
lators [66**], a recent finding that will open a series of
further investigations.
Conclusions
A defect in muco-ciliary clearance of the airways due to
viscous respiratory mucus has been suggested since the
early clinical identification of cystic fibrosis (CF), orig-
inally termed “mucoviscidosis.” CFTR gene identifica-
tion and the intense clinical and experimental research
have confirmed the role of altered airway mucus in the
onset of inflammation and infection, although the final

answer revealing the mechanism of the selectivity of
P. aeruginosa is still debated. In the years, a condition of
relative deficiency of CF mucosal defenses is gaining
consensus, as either CFTR defects seem to involve
directly or indirectly the bacterial killing efficiency of
CF PMNs and macrophages. The chronic infective/in-
flammatory condition has implications not only on
bronchial wall damage but also on the efficiency of novel
CFTR modulators. Whether the cascade of events
starting from CFTR ion transport defects down to
chronic infection and inflammation is becoming consis-

tently clear, that the novel CFTR modulators will be per
se sufficient to completely revert lung infection and
inflammation of adult CF patients to a reasonably stable
respiratory function is presently under scrutiny.
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