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Nanoscale particle therapies for wounds and ulcers

Wound healing in normal hosts follows an 
orderly biological process involving several cel-
lular and molecular events that are traditionally 
organized into three main phases. The purpose 
of this article is to describe current nanopar-
ticle therapies for wound and ulcer healing, 
taking into account the nature of the material, 
the biological event in which they are involved 
and the biostrategies on which its application 
is based.

Nanobiotechnology has arisen from the con-
vergence of engineering and molecular biol-
ogy, leading to the development of structures, 
devices and systems in the atomic, molecular 
or macromolecular size range [1]. The potential 
of nanotechnology has been well known since 
1959, when Nobel Laureate Richard Feynman 
predicted the emergence of a new science that 
deals with structures on a scale of 1–100 nm. 
While currently the nanoscale reaches the µm 
level, the true promise of nanotechnology lies in 
the ability to manipulate materials on the same 
unimaginably small scale used by nature  [2]. 
Nanomedicine involves the cutting-edge com-
bination of nanotechnology with medicine.

Several advantages are offered by small size, 
such as the ability to enter into the cytoplasmic 
space like Trojan horses, ferrying nanoparticles 
across cellular barriers and activating specific 
endocytic and transcytic transport mechanisms. 
[3,4]. The packaging of small-molecule drugs into 
nanoparticles could improve their bioavailabil-
ity, biocompatibility and safety profiles [5] as the 
pharmacokinetics and pharmacodynamics of a 
drug-bearing particle is strongly related to par-
ticle size [6]. 

The field of wound healing emerges as one 
of the clinical applications that will most ben-
efit from this fascinating technology. Successful 
repair of wounds and tissues remains a major 
healthcare and biomedical challenge in the 21st 
Century. In particular, chronic wounds often 
lead to loss of functional ability, increased pain 
and decreased quality of life, and can be a bur-
den on healthcare and health system resources. 
Advanced healing therapies include biological 
dressings, skin substitutes, growth factor-based 
therapies and synthetic acellular matrices, all of 
which aim to correct irregular and dysfunctional 
cellular pathways present in chronic wounds [7].

This article aims to detail the current state of 
the art of nanotechnology-based therapies for the 
treatment of wounds and ulcers.

Wound healing process
By definition, wound healing is a complex pre-
defined cascade of well-orchestrated histologi-
cal events, aimed to repair the discontinuity 
of the epithelium due to trauma, compression, 
burns (external causes) or metabolic or vascular 
diseases (endogenous causes) [8]. These events 
reveal themselves through a series of molecular, 
biochemical and cellular phenomena, usually 
leading to the anatomical reconstitution of the 
biological barrier [9]. Indeed, the ultimate goal 
of wound healing research is rapid recovery with 
minimal scarring and maximal function [10]. In 
some types of wound, a pathological deviation 
from the physiological process of tissue repair 
can occur, resulting in an excessive or insuffi-
cient wound reparation [11]. The normal acute 
wound healing process takes place through three 
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overlapping steps (Figure 1): inflammation, pro-
liferation and remodeling. In severely damaged 
tissue, the choice of carrier is very important, 
as the wound healing process must not be dis-
turbed by vehicle constituents [12]. The current 
nanostrategies, both carrier and drug related, 
that target the three phases of wound repair 
will be discussed, highlighting the cell signal-
ing events involved. 

Inflammation
Inflammation is the first event that spontane-
ously begins immediately after injury. It is 
characterized by clotting and chemotaxis of 
inflammatory cells that cleanse the wound. 
Inflammation arises 1–4 days after wounding 
and it involves the migration first of neutrophils 
into the wound site, followed shortly by mac-
rophages and later by lymphocytes [8,13]. The 
fibrin clot matrix initially provides a 3D scaf-
fold through which immune cells migrate to the 
wound and secrete a host of signaling molecules 
that act as chemoattractants and growth factors. 
Platelets produce factors such as PDGF, EGF, 
TGF-a, TGF-b and VEGF (Figure 2) [14]. 

Fibrin clot
�� Thrombin 

One of the first products of the hemostatic 
response is thrombin (also termed activated fac-
tor II or factor IIa) [15]. It is essential to the con-
version of fibrinogen to fibrin and is responsible 
for aggregation of blood platelets in forming 

the ‘platelet plug’, as well for activation of other 
hemostatic factors [16]. Moreover, the activity 
of thrombin is critical in the later stages of the 
wound healing process, responsible for increas-
ing vascular permeability and allowing cells and 
fluid to enter the wounded tissue [17]. In human 
plasma, the half-life of thrombin is shorter than 
15 s due to close control by protease inhibitors 
and components of the vessel wall [18]. In order 
to provide drugs with long-term protection from 
their natural inhibitors, enzymatic degradation 
and other adverse elements, it has been suggested 
that therapeutic drugs be conjugated to nanopar-
ticles. In the Ziv-Polat laboratory [19], throm-
bin was conjugated to maghemite (g-Fe

2
-O

3
) 

nanoparticles (iron oxide nanoparticles) for 
the treatment of incisional wounds on rat skin. 
Results obtained by analyzing tensile strength 
and histological findings associated with the 
mechanical properties of the wound 28 days 
after treatment indicated that thrombin-conju-
gated (g-Fe

2
-O

3
) nanoparticles accelerated the 

healing of incisional wounds significantly better 
than free thrombin and untreated wounds. The 
relatively greater skin tensile strength obtained 
with such strategies indicates that the novel con-
jugated thrombin may reduce complications of 
surgery such as wound dehiscence [19]. 

Bacterial infection & sepsis
�� Nanoparticle-bearing antibiotics 

As reported previously, the fibrin clot aims to 
initially provide a 3D scaffold through which 
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Figure 1. Main biological phases involved in wound healing. On the left, the 
overlapping events are well defined. None of the phases correspond to a precisely defined period of 
time, and all phases overlap to a certain degree. Indeed, no phase is initiated exactly at the 
completion of the previous one. On the right, cells involved in the healing process are reported in a 
chronological scheme.  
PMN: Polymorphonuclear leukocytes.
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immune cells migrate to act against bacterial 
infections. Indeed, the presence of bacteria fur-
ther exacerbates the tissue damaging processes 
[20]. We should not forget that wound infection 
was so ominous an event that at the beginning 
of 20th Century, infection of burn wounds was 
the major cause of morbidity and mortality (over 
50%) in burn patients [21]. Burn injury disrupts 
the normal skin barrier as well as many systemic 
host defense mechanisms, making skin suscep-
tible to microbial colonization and resulting in 
the development of burn wound sepsis [22].

Staphylococcus is one of the most common 
human pathogens, at the origin of a wide range 
of diseases either from direct staphylococcal 
bacteria invasion or through indirect produc-
tion of toxins. The majority of infections caused 
by staphylococci are due to Staphylococcus 
aureus. Moreover, methicillin-resistant S. aureus 
(MRSA), an opportunistic microbe commonly 
found in skin abrasions and open wounds, has 
recently been identified as one of the major 
causes of hospital-acquired infections. Without 
treatment, these drug-resistant infections can 
lead rapidly to the onset of bacteremia, sepsis 
and toxic shock syndrome [23,24]. Treatment of 
staphylococcal infections is difficult because 
antibiotic resistant strains have become more 

common, increasing the risk of serious compli-
cations. Delivery of antibiotics via nanoparticles 
is a promising drug delivery mechanism, par-
ticularly for controlled release or depot delivery 
of drugs, which would decrease the number of 
doses required to achieve a clinical effect.

More than 90% of Staphylococcus strains are 
resistant to penicillin [25], methicillin, amino-
glycosides, macrolides and lincosamide [26,27]. 
Staphylococcal resistance to penicillin is medi-
ated by penicillinase (a form of b-lactamase) 
production, an enzyme that breaks down the 
b-lactam ring of the penicillin molecule. In 
1961, S. aureus developed resistance to methicil-
lin, invalidating almost all antibiotics including 
the most potent b-lactams. Vancomycin is the 
latest generation antibiotic and can be assumed 
at the moment to be the most useful, although 
a fully vancomycin-resistant strain of S. aureus 
first appeared in the USA in 2002 [28]. The emer-
gence of S. aureus strains with intermediate levels 
of resistance to vancomycin (vancomycin inter-
mediate S. aureus) has also been identified [29]. 
A series of vancomycin-modified nanoparticles 
have been developed and employed in magnetic 
confinement assays to isolate a variety of Gram-
positive and Gram-negative bacteria from aque-
ous solution by Kell et al. [30]. Hachicha et al. 

Figure 2. Principal events during the inflammation phase. In left panel, the main biological 
events during the first phase of the healing is illustrated. The first events are directed to activating 
fibrin and platelets to produce a fibrin clot. Subsequently, cytokines, chemokines and growth factors 
are secreted to battle against infections. In right panel, nanostrategies currently in use to improve 
healing during this first phase are listed. These treatments take advantage of the characteristics of 
the biomaterial, the nature of the drug or molecules encapsulated (i.e., antibiotic, trombinin or 
growth factors), and/or their intrinsic antibacterial effects (i.e., silver or NO). 
NO: Nitric oxide.
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prepared microparticles containing vancomy-
cin for intraocular continuous release injection, 
maintaining drug concentrations above the 
minimal inhibitory limit for 24 h, a requirement 
for endophthalmitis prophylaxis after cataract 
surgery [31]. 

In a Chakraborty et al. investigation, a new 
method was reported for the preparation of 
nanoparticles based on carboxymethyl chito-
san tagged with folic acid by covalent linkage 
through 2,2-(ethylenedioxy)bis-(ethylamine) 
[32]. Physicochemical characteristics of the pre-
pared nanoparticles were examined by Fourier 
transform infrared spectroscopy, dynamic light 
scattering and transmission electron microscopy. 
Vancomycin was then loaded into the prepared 
nanoparticles through physical adsorption. 
These drug-loaded nanoparticles were found to 
be very effective against drug-resistant S. aureus.

Turos et  al. recently identified N-methy
lthiolated b-lactams as a new family of antibac-
terial agents active against Staphylococcus bacte-
ria, including MRSA [33]. Their results suggest 
that these lactams exert growth inhibitory 
effects on bacteria through a mode of action 
that is distinctively different from that of other 
b-lactam antibiotics, and possess structure-
activity patterns unlike those already mapped 
for other b-lactam antibacterials such as the 
penicillins. One of the major limitations in the 
potential application of these N-thiolated b-lac-
tam compounds, however, is their exceedingly 
low water solubility [34]. Thus, Turos and coau-
thors were interested in identifying an effective 
drug delivery platform that would enhance the 
water solubility of lactams, without sacrificing 
inherent bioactivity. The antibacterial drug 
was first converted to an acrylated derivative 
and then dissolved to homogeneity in a liquid 
acrylate monomer (or mixture of compatible 
liquid monomers) at 70°C. This mixture was 
then pre-emulsified in purified water contain-
ing 3% w/w sodium dodecyl sulfate with rapid 
stirring. The resulting homogenous solution 
of micelles was then treated with potassium 
persulfate (1% w/w), a water-soluble radical 
initiator, to induce free radical polymerization. 
The resulting emulsion was found to contain 
uniformly sized polyacrylate nanoparticles in 
which the drug monomer was covalently incor-
porated directly into the polymeric matrix of 
the nanoparticle  [35]. A unique feature of this 
methodology is that only one step is required 
to build the nanoparticle emulsion containing 
the antibiotic agent from its monomer constit-
uents, without the need for further chemical 

modification. Most importantly, these nanopar-
ticles were shown to have potent antibacterial 
activity against MRSA. For these studies, four 
N-thiolated b-lactam derivatives were selected 
for use as antibiotic drug monomers in order 
to assess the effect of different lengths and 
locations of the acrylate linker on the resulting 
nanoparticle size and anti-MRSA bioactivity. 
In vitro screens have determined that these poly-
acrylate nanoparticles are nontoxic to human 
dermal fibroblasts, adding to their favorable 
characteristics and biocompatibility. Control 
experiments have indicated that nanoparticle 
emulsions were completely stable for at least 
24 h at elevated temperatures (up to 60°C) and 
in blood serum, as determined by dynamic light 
scattering and antibacterial screening (mini-
mum inhibitory concentration analysis).

Silver-based nanoparticles
Although antibiotics are of great importance, 
their overuse and the failure of healthcare facili-
ties to apply basic infection control policies and 
procedures have contributed to the high mor-
tality and morbidity of burn wound patients 
due to infections caused by multidrug-resis-
tant nosocomial pathogens (e.g., Pseudomonas 
aeruginosa, methicillin-resistant staphylococci, 
vancomycin-resistant enterococci) [36–39]. Thus, 
antimicrobial therapy that controls coloniza-
tion and proliferation of microbial pathogens, 
including multidrug-resistant organisms, is the 
most important aspect of skin wound care [40]. 
The recent introduction of antimicrobial agents 
containing silver has revolutionized burn wound 
care [41]. Interestingly, for thousands of years, 
silver and silver ions have been used for their 
bactericidal properties [42–44], which include:

�� Multilevel antibacterial effects that consider-
ably reduce the chances of developing resis-
tance, since this effect of silver is thought to 
be due to blockage of respiratory enzyme path-
ways and alteration of microbial DNA and the 
cell wall [45];

�� Effectiveness against multidrug-resistant 
organisms [46,47]; 

�� Low systemic toxicity [48,49].

Nanotechnology has provided the means of 
producing pure silver nanoparticles (SNPs), 
markedly increasing the rate of silver ion release. 
Jain et al. [49,50] synthesized silver (Ag+) nanopar-
ticles by a proprietary process that involves 
photoassisted reduction of Ag+ to metallic 
nanoparticles and their biostabilization. The 
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gel formulation containing SNPs in the size 
range of 7–20 nm has been tested to identify 
the minimum inhibitory concentration and 
minimum bactericidal concentration against 
standard reference cultures, as well as multidrug-
resistant organisms. SNP have been shown to 
destroy Gram-negative bacteria more effectively 
than Gram-positive bacteria. They also exhibit 
good antifungal activity, synergism when asso-
ciated with commonly used antibiotics such as 
ceftazidime, additive effects when associated 
with streptomycin, kanamicin, ampiclox, poly-
myxyn B, as well as antagonistic effects with 
chloramphenicol. 

Surprisingly, SNP also exhibited good anti-
inflammatory properties. These results were 
confirmed by Tian et al. in an in vivo model 
that demonstrated promotion of wound heal-
ing by silver through reduction of cytokine-
modulated inflammation [51]. Silver-induced 
neutrophil apoptosis and decreased metallopro-
teinase (MMP) activity may also have contrib-
uted to overall dampening of the inflammatory 
response and as a consequence, an accelerated 
rate of wound healing. Moreover, the authors 
showed that in wounds treated with SNPs, the 
high levels of TGF-b normally present in keloids 
and hypertrophic scars were lower and associ-
ated with higher IFN-g levels, compared with 
nontreated wounds in the period before wound 
closure. As IFN-g has been demonstrated to be 
a potent antagonist of fibrinogenesis through 
its ability to inhibit fibroblast proliferation and 
matrix production, its control on TGF‑b pro-
duction may play a role [51]. 

Since cytokines play an important role in 
wound healing, the authors investigated the 
expression patterns of IL-6, TGF-b1, IL-10, 
VEGF and IFN-g with quantitative real-time 
PCR. Levels of IL-6 mRNA in the wound areas 
treated with SNPs were maintained at statisti-
cally significantly lower levels throughout the 
healing process, while mRNA levels of TGF‑b1 
were higher in the initial period of healing in 
the site treated with SNPs. The same trend was 
observed for IL-10, VEGF and IFN-g mRNA. 
Moreover, in this study, better cosmetic results 
were observed in animals treated with SNPs. In 
terms of wound healing, enhanced expression of 
TGF‑b1 mRNA was found in both keloids and 
hypertrophic scars. 

Cumulative evidence has suggested that 
TGF‑b1 plays an important role in tissue fibro-
sis and postinjury scarring. The authors dem-
onstrated that lower levels of TGF‑b coincided 
temporally with increased levels of IFN‑g before 

wound closure in the SNP-treated group. Since 
IFN‑g has been demonstrated to be a potent 
antagonist of fibrogenesis through its ability 
to inhibit fibroblast proliferation and matrix 
production, its control of TGF‑b production 
may play a role in the positive effects of silver 
on wound healing. Regarding angiogenesis, it 
is well known that VEGF promotes healing [52]. 
Tian et al. detected much higher levels of VEGF 
mRNA in keratinocytes present at the wound 
edge and in those that migrated to cover the 
wound surface. Besides a scarce expression in 
mononuclear cells, VEGF was not expressed in 
other cell types in the wound, indicating that 
keratinocytes are a major source of VEGF in 
the wound. As this factor is highly specific for 
endothelial cells, it is likely to have a paracrine 
function in the sprouting of capillaries on the 
wound edge and in granulation tissue. It appears 
from these findings that silver treatment not only 
acts as an antibacterial, but also directly acts on 
dampening the process of inflammation, thus 
promoting scarless wound healing [51].

Nitric oxide-delivering nanoparticles
Despite its undoubted success, Ag+ treatment 
of wounds does have some undesirable effects, 
such as a cosmetic blue gray coloration of the 
skin (argyria) with prolonged use and the recent 
insurgence of silver-resistant mutant bacteria 
[53–55]. Recent studies have investigated the 
antimicrobial properties of nitric oxide (NO), 
a reactive free radical produced by inflamma-
tory cells (e.g., neutrophils and macrophages) 
during bacterial infection [56–59]. Using small 
molecules as NO donors, DeRosa et al. dem-
onstrated that NO possesses a broad spectrum 
of antibacterial properties against both Gram-
positive and Gram-negative bacteria [60]. Miller 
et al. reported the efficacy of NO in destroying 
MRSA biofilms, which are complex communi-
ties that form when a group of microorganisms 
self-secrete a polysaccharide matrix that retains 
nutrients for the constituent cells and protects 
them from both the immune response and anti-
microbial agents [61]. Barraud et al. reported that 
NO-releasing small molecules promoted cell dis-
persal in P. aeruginosa biofilms [62]. As an alter-
native strategy for delivering NO to pathogenic 
bacteria, Hetrik et al. reported on the antibacte-
rial properties of NO-releasing silica nanopar-
ticles [63] that exhibited enhanced bactericidal 
efficacy against planktonic P. aeruginosa cells 
compared with small molecule NO donors. The 
rapid diffusion characteristic of NO may result 
in enhanced penetration into the biofilm matrix 
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and thus improved efficacy against biofilm-
embedded bacteria [64]. Moreover, the authors 
demonstrated that with respect to wounds, NO 
exerted beneficial secondary effects on the heal-
ing process by modulating inflammation, angio-
genesis and tissue remodeling. Since wounds are 
known to be deficient in NO [65], application of 
NO-releasing silica nanoparticles may accelerate 
healing by killing bacteria and overcoming the 
general NO deficiency.

Gastrointestinal ulcers
Bacterial infections are also the cause of non-
healing wounds in the mucosal environment, 
giving rise to gastrointestinal ulcers. Helicobacter 
pylori is the major cause of gastrointestinal infec-
tion in adults and children worldwide [66,67]. 
Treatment of H. pylori infection [68] is obstructed 
by two main factors:

�� The bacteria live underneath the gastric 
mucous lining adherent to the gastric epithe-
lium, and hence access of antimicrobial drugs 
to the site of infection is restricted [69,70];

�� Antibiotics are not delivered to the site of 
infection in effective concentrations and in 
fully active forms [71].

The formulation of nanoparticles embedded 
with specific antibiotics has been shown to be 
successful in clinical applications for gastrointes-
tinal infection. Indeed, the greatest advantage of 
smaller particles is their ability to be more adhe-
sive and to better act against bacteria present in 
the gastrointestinal mucosa [72]. Two principal 
mechanisms have been identified that facilitate 
particle adhesion in ulcerated tissue:

�� Abundant mucus production in the gastroin-
testinal tract, especially in the stomach, favors 
small particle adhesion to the mucus layers due 
to their relatively small mass. In addition, an 
inflammatory state in the gastrointestinal tract 
increases mucus production and results in a 
higher quantity of particle attachment [73]; 

�� Small particles are taken up more easily by 
immune cells, such as macrophages, in the 
area of active inflammation; particles in the 
µm range are taken up by macrophages less 
effectively [74] and thus constitute the upper 
limit in size.

With these concepts in mind, the design 
for anti-H. pylori nanoparticle-based therapies 
is defined by two main aspects: the choice of 
antibiotic and the quantitative and qualitative 
adhesive behavior of the nanocarrier in the ulcer-
ated tissue of the stomach.

Nanoparticle-bearing antibiotics 
Regarding antibiotics, the most effective treat-
ments for H. pylori infection are combinations of 
two antibiotics (e.g., clarithromycin, tetracycline 
or metronidazole) and a proton pump inhibitor. 
At present, therapeutic approaches are available 
in standard tablet formulations [75]; thus, the 
drug is released into the stomach and provides 
a localized effect. In fact, therapy choices are 
preferentially selective and locally active with 
limited availability to other tissue [76].

Ramteke et al. have prepared clarithromycin- 
and omeprazole-containing gliadin nanopar-
ticles with desolvation methods using pluronic 
F-68 as a stabilizing agent [77]. Gliadin defines 
a group of polymorphic proteins extracted from 
gluten that are soluble in an ethanolic solution 
and show a remarkably low solubility in water 
except at extreme pH. Due to these physico-
chemical properties, gliadin nanoparticles can 
be prepared by desolvation methods for mac-
romolecules using environmentally acceptable 
solvents such as ethanol and water. These macro-
molecules showed a high capacity for drug load-
ing and were soluble without further chemical 
or physical crosslinking.

With in vitro and in vivo studies, the authors 
tested the mucoadhesive properties and antibac-
terial activity of these nanoparticles. Findings 
indicated greater eradication with the dual ther-
apy nanoformulation compared with traditional 
formulations [78]. 

Polystyrene fluorescent nanoparticles were 
studied by Hasani et al. [79] in a detailed analysis 
of adherence to ulcerated gastric tissue. After 
induction of gastric ulcers in mice, nanoparticle 
therapy was administered and inflammation 
monitored by myeloperoxidase activity, a reli-
able index that quantifies infiltration of activated 
neutrophils into the inflamed tissue [80]. At the 
end of the treatment, confocal laser scanning 
microscopy analyses qualitatively localized the 
particles and fluorescent spectroscopy quanti-
tatively determined particle deposition. Results 
confirmed that nanoparticle deposition was 
significantly higher in ulcerated compared with 
healthy tissues [81] and that embedded drug 
nanoparticles acted in selected areas [82,83].

�� Heparin
A complete study of pH-responsive chitosan/
heparin nanoparticles for stomach-specific anti-
H. pylori therapy was performed by Lin et al. 
[84]. In this study, pH-responsive nanoparticles 
were produced instantaneously upon the addi-
tion of a heparin solution to a chitosan solution 
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with magnetic stirring at room temperature. The 
nanoparticles appeared to have a particle size of 
130–300 nm, with a positive surface charge, and 
were stable at pH 1.2–2.5, allowing them to pro-
tect the incorporated amoxycilline from destruc-
tive gastric acids. Through in vivo studies, they 
demonstrated that the prepared nanoparticles 
adhered to and infiltrated cell–cell junctions and 
interacted locally with H. pylori infection sites in 
intercellular spaces.

�� Proliferation
Factors secreted during inflammation trigger 
and drive the proliferation stage, which nor-
mally takes place between 4 and 21 days after 
wounding. During this stage, fibroblasts are 
stimulated by FGF and PDGF to invade the 
wound site and produce extracellular matrix 
(ECM) components, such as collagen, elastin 
and glycosaminoglycans, to generate granulation 
tissue. Fibroblasts also secrete FGF, which can, 
along with VEGF secreted by platelets and neu-
trophils, act as an angiogenic factor to stimulate 
endothelial cell proliferation and migration, thus 
promoting vascularization at the healing site. 
While fibroblasts and endothelial cells mostly 
invade the wound site from its bed, keratinocytes 
at the margin of the wound undergo a transient 
burst of proliferation that will sustain epitheli-
alization over the wound (Figure 3) [85].

�� Growth factors
The end of the inflammation phase is character-
ized by the presence of peptides needed during 
the subsequent phase, proliferation. These fac-
tors are mainly growth factors such as PDGF, 
EGF, CTGF and FGF-b. The aim of growth 
factors is to attract cells into the wound and to 
promote cell migration into the wound area, to 
stimulate the growth of epithelial cells and fibro-
blasts, to initiate the formation of new blood 
vessels, and to modulate matrix formation and 
remodeling of scars [86].

The clinical use of growth factors in wound 
healing has been of great interest recently. One 
problem with their use is their rapid breakdown 
by numerous proteolytic enzymes that enrich the 
wound site [87]. A means of enhancing the in vivo 
efficacy of growth factors is to facilitate the sus-
tained release of these bioactive molecules over 
an extended time period by incorporation into 
polymer nanocarriers. Implantation of a drug 
delivery device directly into the tissue in need 
of treatment facilitates localized drug delivery. 
Delivery systems have been designed in a vari-
ety of configurations and have been fabricated 
from different types of natural and synthetic 
polymers (degradable and nondegradable) [88,89]. 
These devices have a common ability to control 
the release of bioactive proteins for extended 
periods of time by different mechanisms [90]. 

Figure 3. Principal events during the proliferation phase. On the left, the main biological events 
involved in the second phase of healing, proliferation, is illustrated. During this phase, capillaries, 
fibroblasts and macrophages invade the dermis, giving rise to granulation tissue. Fibroblasts produce 
a new extracellular matrix over which the re-epithelialization process occurs. On the right, 
nanostrategies currently in use as therapy in promoting healing during this second phase are listed. 
Nanosphere-based strategies usually act as drug delivery systems when used during this proliferative 
phase of healing. 
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Through incorporation into polymeric devices, 
protein structure and thus biological activity can 
be stabilized, prolonging the length of time over 
which growth factors are released at the delivery 
site. The period of drug release from a polymer 
matrix can be regulated by the drug loading, 
type of polymer used and the processing condi-
tions. Adverse processing conditions that cause 
protein aggregation or denaturation have to be 
avoided. In biodegradable carriers, growth fac-
tor release is controlled by the polymer matrix’s 
rate of degradation, which causes changes in the 
morphological characteristics of the materials, 
such as porosity or permeability [91,92]. The use 
of porous materials offers advantages that are 
particularly important for drug release systems: 
higher specific surface for the adsorption/release 
of active components and enhancement of the 
drug release rate for erodible particulate systems. 
These two aspects are particularly relevant for 
particles that have nanostructured porosity [93].

These particles are usually produced by dou-
ble emulsion-solvent evaporation or spray drying 
techniques. The limits associated with these pro-
cesses are excessive use of organic solvent, which 
leads to pollution of the product and waste dis-
posal problems, toxicity for incomplete solvent 
removal, and thermal and chemical degradation 
of substances [94]. Other techniques, such as spray 
drying, operate at temperatures that can thermally 
denature thermosensible compounds, such as pro-
teins. One of the advantages of using supercritical 
fluids in polymer processing is the possibility of 
producing different solid shapes and structures 
at low temperature with a minimum amount of 
residual organic solvent [95,96]. Traditional tech-
niques used so far include mechanical treatment, 
recrystallization of solute from a solution using 
liquid antisolvent, freeze drying and spray dry-
ing. The limits associated with these processes are 
excessive use of organic solvent, which again leads 
to pollution of the product and waste disposal 
problems, and thermal and chemical degrada-
tion of bioactive substances. Conversely, processes 
based on supercritical fluids, and especially on 
CO

2
, have the advantages of being environmen-

tally safe, preserving the properties of thermally 
labile compounds, and being inexpensive. Drug-
loaded polymeric microparticles can be produced 
by a semicontinuous gas antisolvent precipitation 
process, in which solutes are precipitated from 
organic solutions upon contact with compressed 
CO

2
 antisolvent fluxed through a high-pressure 

precipitation unit [97]. 
With this technology, Zavan et al. used hyal-

uronan-based porous nanoparticles, obtained 

with a high-pressure CO
2
 antisolvent tech-

nique, as a growth factor delivery system for 
the in  vivo treatment of skin ulcers [98]. The 
particles had a nanostructured porosity that 
was particularly suitable for absorbing bioac-
tive molecules. HYAFF11®, the benzyl ester of 
hyaluronic acid (Fidia Advanced Biopolymer, 
Italy), is a well-known biopolymer in tissue 
engineering applications, such as in vitro recon-
struction of skin, cartilage and bone, and has 
recently been used for the in vivo regeneration 
of small arteries and veins [99,100]. In their study, 
PDGF was embedded in HYAFF nanoparticles 
as a delivery system designed to improve full-
thickness wound repair. HYAFF particles have 
the ability to absorb different growth factors, 
cytokines and bioactive peptide fragments, and 
to release them in a temporally and spatially 
specific event-driven manner. This timed and 
localized release of cytokines, enzymes and 
pharmacological agents should promote optimal 
tissue repair and regeneration of full-thickness 
wounds. PDGF was chosen because it is a potent 
activator for cells of mesenchymal origin, and a 
stimulator of chemotaxis, proliferation and new 
gene expression in monocytes, macrophages and 
fibroblasts, accelerating ECM deposition [101]. 
Moreover, PDGF and its relative proteins were 
the first approved proteins for promoting dia-
betic foot healing and other chronic nonhealing 
ulcers. Knighton et al. reported their successful 
treatment of chronic ulcers since 1986 with an 
autologous platelet-derived wound healing for-
mula [102]. In their study, the authors optimized 
timing and localization of release of PDGF to 
promote optimal tissue repair and regeneration 
of full-thickness wounds. 

Another growth factor that has found great 
success in clinical application is FGF. The FGF 
family regulates proliferation, differentiation, 
migration, ECM deposition and angiogenesis 
through various pathways [103]. Ikada et al. [104] 
used bFGF-impregnated gelatin nanospheres on 
diabetic mice skin wounds, concluding that this 
is a clinically useful treatment in patients with 
deficient wound repair such as in decubit ulcers 
[105,106]. Poly(d,l-lactic-co-glycolic) acid (PLGA) 
microspheres embedded with EGF, another 
potent mitogen growth factor, has also been suc-
cessfully used in the treatment of chronic gastric 
ulcers [107].

��Opioids
While keratinocyte migration indicates a positive 
effect on the healing process, delayed migration 
indicates delayed healing. Of the several growth 
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factors involved in this process (e.g., EGF and 
KGF), recently Wolf et al. [108] indicated that opi-
oids enhance wound healing by promoting kera-
tinocyte migration. This novel finding is of great 
interest because one of the side effects of a severe 
skin wound is intense pain. For efficient pain 
reduction, topical application of opioids appears 
advantageous. Opioid receptors (µ) are present 
on nociceptive endings [109] and in the human 
skin [110]. The endogenous ligand b-endorphin 
induces keratinocyte migration [111], and opioid 
receptor agonists, such as dalargin and morphine, 
accelerate wound healing in rats [112], possibly due 
to stimulated migration of keratinocytes. 

Clinical success using these molecules appears 
limited thusfar [113], possibly due to too low con-
centrations of opioid reaching the target site over 
time. Since nanoparticulate carrier systems can 
increase skin penetration several folds and slowly 
release the loaded drug, Wolf et al. [108] used 
both solid lipid nanoparticles and dentritic core-
multishell nanotransporters embedded with 
several opioids to test the influence on kerati-
nocyte migration and local tolerability. HaCaT 
cells were selected to study keratinocyte physiol-
ogy and migration in this study. Initial experi-
ments with modified Boyden chambers proved 
both keratinocyte types to respond to opioids 
and the positive control, TGF-b1. Inducing the 
expression of fibronectin receptors, TGF‑b1 
stimulated keratinocyte migration towards 
fibronectin covering the membrane, consis-
tently duplicating the number of migrated cells 
counted in the membrane compared with the 
negative control. In the chemotaxis model, opi-
oids also enhanced HaCaT cell migration in a 
concentration-dependent manner. Maximum 
opioid effects corresponded to TGF-b1 efficacy 
and were completely inhibited in the presence 
of naloxone, whereas this TGF-b1-modulated 
effect was not influenced by opioid receptor 
antagonism. Thus, opioid-induced migration 
enhancement was due to specific receptor inter-
action. To investigate whether the effect of the 
opioids was chemotactic or chemokinetic in a 
second set of experiments, drugs were added 
to the upper, as well as to the lower, chambers 
to abolish the gradient. Findings showed that 
TGF‑b1 enhanced HaCaT cell migration both 
chemotactically and chemokinetically; how-
ever, the chemokinetic approach eliminated 
migration induced by morphine, fentanyl and 
hydromorphone. This indicated that opiods 
had a chemotactic rather than chemokinetic 
effect on HaCaT cells. By contrast, buprenor-
phine still enhanced keratinocyte migration to 

a limited extent even after abolishing the gra-
dient, indicating that buprenorphine had at 
least a partial chemokinetic effect on HaCaT 
cells. As an acidic pH has to be considered in 
inflamed wound areas, the efficacy of the opioids 
in this condition was also evaluated. Adjusting 
the cell culture medium to pH 6.5, the opioids 
still evoked a significant chemotactic stimula-
tion of HaCaT cell migration, although slightly 
less than that observed at physiological pH level. 
In these different migration assays, the tested 
opioids evoked almost identical effects, thus the 
authors focused on morphine as a representative 
opioid for subsequent investigations.

In the end, they aimed to verify the opioid 
effect using an independent approach. The so-
called scratch test allows for evaluation of the 
ability of a substance to accelerate closure of a 
wound that has been created artificially in a cell 
monolayer. After a repair period of 48 h at 37°C, 
the HaCaT cells had more efficiently prolifer-
ated and migrated into the damaged area in the 
presence of TGF-b1 in the medium. The addi-
tion of morphine also increased the ability of the 
HaCaT cells to close the wound [113].

To summarize, using the human keratinocyte-
derived cell line HaCaT, the authors found that 
opioids stimulated cell migration and closure of 
experimental wounds. Enhancement of migra-
tion was concentration dependent and could 
be blocked by the opioid receptor antagonist 
naloxone, indicating a specific opioid–receptor 
interaction. These findings indicate that opi-
oids loaded to solid lipid nanoparticles or CMS 
may be suitable for topical pain reduction and 
improved wound healing.

Remodeling
The last step of normal acute wound healing is 
remodeling, during which ECM components are 
modified by the balanced mechanisms of pro-
teolysis and new matrix secretion, and during 
which the wound becomes gradually less vas-
cularized. The initial granulation tissue is weak 
but gains strength over time due to the gradual 
replacement of immature type III collagen with 
mature type I collagen (Figure 4) [86]. 

The clinical manifestations of wound matu-
ration include contraction, decreased redness, 
decreased thickness, decreased induration and 
increased strength. Although these changes con-
tinue to develop over a period of weeks, months 
and even years, their initiation overlaps with the 
production of granulation tissue during the pro-
liferative phase of wound healing. As such, fibro-
blasts and their products, collagen and MMPs, 



Author P
ro

of 

Nanomedicine (2010) 5(4)10 future science group

Review Cortivo, Vindigni, Iacobellis, Abatangelo, Pinton & Zavan Nanoscale particle therapies for wounds & ulcers Review

along with blood vessels, constitute the main 
participants in wound maturation. Excessive 
contraction in large wounds can lead to con-
tractures, while excess formation of scar tissue 
leads to hypertrophic scars or even, if the scar 
tissue extends into the healthy tissue around the 
wound, a keloid scar [114]. 

The inverse relationship between increasing 
wound strength and decreasing wound thickness 
over time is attributed primarily to remodeling of 
the collagen-based ECM. This process of remod-
eling constitutes a balance between collagen pro-
duction, breakdown and remodeling. Collagen 
breakdown is attributed primarily to MMP and 
tissue inhibitor of MMP (TIMP) production 
and activity. Increased mRNA levels of MMP-2, 
TIMP-2, and MMP-7 have been demonstrated 
during the early phases of ECM remodeling [115]. 
Conversely, expression of MMP-1 and MMP-9 
and TIMP-1 mRNA levels decreases prior to 
ECM remodeling. Thus, it appears that the 
tightly coordinated expression of specific com-
binations of MMPs and TIMPs may be necessary 
for proper wound maturation [116,117]. 

The absence of appendages is another charac-
teristic associated with mature scars. The most 
clinically obvious appendage loss involves miss-
ing hair follicles. Unlike keratinocyte stem cells, 
which repopulate the neoepidermis and contrib-
ute to the indefinite production of the epithelial 
layer, the stem cells responsible for epithelial 
appendages do not appear to repopulate a scar. 

Several authors have speculated that this phe-
nomenon may be due in part to the requirement 
that stem cells live in a special ‘microenviron-
ment’ or ‘niche’ [118]. Furthermore, the inability 
of scar tissue to reproduce a suitable appendage-
specific niche may contribute to the absence of 
these structures in mature scars [119].

In light of these considerations, research 
approaches to improve the results of the remod-
eling phase are directed to:

�� Manage enzymatic activity of MMP and 
TIMP to control tissue scar formation;

�� Manage stem cell biology to improve append-
age formation in mature tissue scars.

Nanotechnology applied to gene therapy 
as a therapeutic treatment is attracting much 
interest in the research community, leading 
to noteworthy developments over the past two 
decades. Nonviral vectors have recently received 
increasing attention in order to overcome the 
safety problems of their viral counterparts. 
Nanoparticles, with their special characteristics 
such as small particle size, large surface area and 
the ability to change surface properties, have 
numerous advantages over other gene delivery 
systems [120,121].

Gene therapy
Nonviral polymeric gene delivery systems offer 
increased protection from nuclease degrada-
tion, enhanced plasmid DNA (pDNA) uptake 

Figure 4. Principal events during the remodeling phase. On the left, the biological events 
involved during the last phase of the healing, remodeling, is illustrated. The clinical manifestations of 
wound maturation include contraction, decreased redness, decreased thickness, decreased induration 
and increased strength. As such, fibroblasts and their products, collagen and metalloproteinases, 
along with blood vessels, constitute the main participants in wound maturation. In the right panel, 
nanostrategies currently in use for promoting healing during this second phase mainly act as gene 
delivery systems. 

Nanostrategies direct 
to remodeling phase

Remodeling phase

Epidermis

Dermis

Nanoparticles for
gene therapies

Nanomedicine © Future Science Group (2010)
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and controlled dosing to sustain the duration 
of pDNA administration. Such gene delivery 
systems can be formulated from biocompat-
ible and biodegradable polymers such as PLGA 
[122]. Experimental loading of hydrophilic mac-
romolecules, such as pDNA, is low in polymeric 
particles. The study of Mayo et al. [123] aimed 
to develop a supercritical fluid extraction of 
emulsions (SFEE) process based on CO

2
 for 

preparing pEGFP–PLGA nanoparticles with 
high plasmid loading efficiency. Another objec-
tive was to determine the efficacy of pFlt23k, 
an anti-angiogenic pDNA capable of inhibiting 
VEGF secretion, following nanoparticle forma-
tion using the SFEE process. Results indicated 
that the SFEE process allowed high loading of 
pDNA (19.7%, w/w), high loading efficiency 
(>98%) and low residual solvents (<50 ppm), 
due to rapid particle formation from efficient 
solvent removal provided by the SFEE process. 
pFlt23K–PLGA nanoparticles were capable 
of in vitro transfection, significantly reducing 
secreted VEGF from human lung alveolar epi-
thelial cells (A549) under normoxic and hypoxic 
conditions. pFlt23K–PLGA nanoparticles are 
not cytotoxic and are of potential value in treat-
ing wound disorders in which VEGF levels are 
elevated [124]. 

Other materials largely applied for this pur-
pose are polysaccharides and other cationic 
polymers. They have been recently used in phar-
maceutical research and industry to control the 
release of antibiotics, DNA, proteins, peptide 
drugs and vaccines. They have also been exten-
sively studied as nonviral DNA carriers for gene 
delivery and therapy. Chitosan is one of the most 
used since it can promote long-term release of 
incorporated drugs. Chitosan micro- and nano-
spheres can be prepared with different manufac-
turing processes (nanofabrication). Moreover, 
the preparation of chitosan and chitosan/DNA 
nanospheres using a novel and simple osmosis-
based method has been recently reported [125]. 
Masotti described a novel nanofabrication 
method that may be useful for obtaining small 
DNA-containing nanospheres (38 ± 4 nm) for 
biomedical applications  [126]. Their reported 
method has general applicability to various 
synthetic or natural biopolymers [126]. Solvent, 
temperature and membrane cut-off are the phys-
icochemical parameters that control the overall 
osmotic process, resulting in nanostructured sys-
tems of different size and shape that may be used 
in several biotechnological applications. 

To target enzymatic activity during the 
remodeling phase, Chellat F et al. investigated 

the effects of chitosan–DNA nanoparticles on 
a human macrophage cell line [127]. Cytokine 
(TNF-a, IL-1b, IL-6 and IL-10), MMPs 
(MMP-2 and MMP-9) and MMP inhibitor 
(TIMP-1 and TIMP-2) release were assessed 
after incubation with different amounts of 
nanoparticles. Their secretion was quantified 
by enzyme-linked immunoadsorbent assay. 
Gelatinolytic activity of MMP-2 and MMP-9 
was determined by zymography in cell super-
natants and lysates. Cytokine secretion was not 
detected even in the presence of high amount 
of nanoparticles. Conversely, the secretion of 
MMP-9 in cell supernatants increased signifi-
cantly after 24 and 48 h in comparison with 
nontreated cells. MMP-2 secretion was aug-
mented only after 48 h with incubation of the 
highest concentrations of nanoparticles (10 and 
20 µg/ml DNA content). However, zymography 
studies showed that secreted MMPs were in their 
proactive form, while in the presence of 10 and 
20 µg/ml DNA containing nanoparticles, the 
active form of MMP-9, but not MMP-2, was 
detected in cell lysates. In conclusion, expo-
sure of THP-1 macrophages to chitosan–DNA 
nanoparticles did not induce release of proin-
flammatory cytokines, but ensured the presence 
of active MMP-9 within the macrophages. This 
event could possibly be related to nanoparticle 
phagocytosis and degradation rather than to 
inflammatory reactions [128].

Stem cells
Stem cells hold great potential as cell-based 
therapies to promote vascularization, hair fol-
licle reconstruction and tissue regeneration. 
Yang et  al. have developed transiently modi-
fied stem cells that highly express VEGF for 
the purposes of promoting angiogenesis  [129]. 
Nonviral, biodegradable polymeric nanoparti-
cles were developed to deliver the hVEGF gene 
to human mesenchymal stem cells and human 
embryonic stem cell-derived cells. Treated stem 
cells demonstrated markedly enhanced hVEGF 
production, cell viability and engraftment into 
target tissues. Implantation of scaffolds seeded 
with VEGF-expressing stem cells (hMSCs and 
hESdCs) led to a two- to four-fold higher ves-
sel densities 2 weeks after implantation, com-
pared with control cells or cells transfected with 
VEGF through Lipofectamine 2000, a leading 
commercial reagent. A total of 4 weeks after 
intramuscular injection into mouse ischemic 
hindlimbs, genetically modified human mesen-
chymal stem cells substantially enhanced angio-
genesis and limb salvage while reducing muscle 



Author P
ro

of 

Nanomedicine (2010) 5(4)12 future science group

Review Cortivo, Vindigni, Iacobellis, Abatangelo, Pinton & Zavan Nanoscale particle therapies for wounds & ulcers Review

degeneration and tissue fibrosis. These results 
indicate that stem cells engineered with biode-
gradable polymer nanoparticles may be thera-
peutic tools for vascularizing tissue constructs 
and treating ischemic disease [128]. 

Conclusion & future perspective
Recently, tremendous progress has been made in 
discovering the cellular and molecular mecha-
nisms underlying the wound healing process. 
An efficient and complete process of wound 
healing is critical for the general wellbeing of 
any patient. Traditional clinical treatments 
of wounds/ulcers are still relevant, but more 

overlap between novel highly technological 
approaches, incorporating knowledge on cellu-
lar and subcellular events occurring during the 
normal healing process, could markedly improve 
future therapeutic interventions.

Nanotechnology offers great opportunity 
in improving wound healing treatments. The 
nanometer scale opens the way for the devel-
opment of novel materials for use in highly 
advanced medical technology. Future develop-
ments depend indeed on identification of clini-
cally relevant targets and on raising targeting 
efficiency of the multifunctional nanocarriers. 
As researchers develop the ever-expanding body 

Executive summary

Inflammation
�� Skin damage

–	 Increasing life time of the fibrin clot: one of the first products of the hemostatic response is thrombin, which is responsible for the 
aggregation of blood platelets in the formation of the ‘platelet plug’ and for increasing vascular permeability, allowing cells and 
fluid to enter the wounded tissue. In human plasma, the half-life of thrombin is shorter than 15. In order to provide drugs with 
long-term protection it has been suggested that therapeutic drugs be conjugated to nanoparticles, thereby enhancing their 
effectiveness. In Ziv-Polat laboratory they have conjugated thrombin to maghemite (g-Fe

2
-O

3
) nanoparticles (iron oxide 

nanoparticles) for the treatment of incisional wounds on rat skin.

–	 Bacterial infection and sepsis: the presence of bacteria in the healing bed exaggerates the tissue damaging processes.

–	 Nanoparticles bearing antibiotics against methicillin-resistant Staphylococcus aureus (MRSA): one of the most human pathogens 
commonly found in skin abrasions and open wounds is represented by MRSA, an opportunistic microbe. Several nanoparticles 
bearing vancomycin or N-methylthiolated b lactams against MRSA have been developed to this regard.

–	 Silver-based nanoparticles: silver shows multilevel antibacterial effect on cells that considerably reduce the chances of 
developing resistance. Jain et al. synthesized silver nanoparticles by a proprietary process that involves photoassisted reduction of 
Ag+ to metallic nanoparticles and their biostabilization. Tian et al. using silver nanoparticles in an in vivo model, confirmed that silver 
promote wound healing by decreasing inflammatory through cytokine modulation.

–	 Nitric oxide (NO)-delivering nanoparticles: NO, a reactive free radical produced by inflammatory cells, posses broad spectrum 
antibacterial properties against both Gram-positive and Gram-negative bacteria. Small molecules of NO donor based on several 
materials (e.g., silica) shows speed healing by killing bacteria and overcoming the general NO deficiency.

�� Gastrointestinal ulcers
–	 Bacterial infection: Helicobacter pylori is the major cause of gastrointestinal infection. In this view, Ramteke et al. prepared 

clarithromycin- and omeprazole-containing gliadin nanoparticles; polystyrene nanoparticles have been instead employed by Hasani 
et al. for a detailed analysis of their ability to adhere on the ulcerate tissue of the stomach. A complete study of drug release and 
attachment behavior of nanoparticles has been performed by Lin et al. in which pH-responsive chitosan/heparin nanoparticles for 
stomach-specific anti-H. pylori therapy have been developed and characterized.

Proliferation
�� Growth factors: the aim of growth factors is to attract cells into the wound and to promote cell migration into the wound area, 

stimulate the growth of epithelial cells and fibroblast, start the formation of new blood vessels, and have profound influence on the 
matrix formation and remodeling of the scars. One way of enhancing the in vivo efficacy of growth factors is to facilitate the sustained 
release of bioactive molecules by their incorporation into polymer nanocarriers. Hyaluronan/gelatin/poly(d,l-lactic-co-glycolic) acid (PLGA) 
nanoparticles embedded with different growth factors have been successfully applied on skin wounds.

�� Opioids: recently it has been showed that opioids enhance wound healing process by the improving of keratinocytes migration. Wolf 
et al., using solid lipid nanoparticles and dentritic core-multishell nanotransporter both embedded with several opioids, confirmed the 
influence of these drugs on keratinocytes migration and local tolerability.

Remodeling
�� The last step of normal acute wound healing is remodeling, during which the extracellular matrix components will be modified by the 

balanced mechanisms of proteolysis and new matrix secretion, and during which the wound becomes to be gradually less vascularized.
–	 Gene therapy: nonviral polymeric gene delivery systems offer increased protection from nuclease degradation, enhanced plasmid 

DNA uptake and controlled dosing to sustain the duration of plasmid DNA administration. Such gene delivery systems can be 
formulated from biocompatible and biodegradable polymers, such as PLGA, polysaccharides and chitosan. 

–	 Stem cells: stem cells hold great potential as cell-based therapies to promote vascularization and tissue regeneration. Nonviral, 
biodegradable polymeric nanoparticles were developed by Yang F et al. to deliver the hVEGF gene to human mesenchymal stem 
cells and human embryonic stem cell-derived cells, confirming the engraftment of the graft tissue.
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of nanoparticles for use as drug or gene delivery 
vehicles, there is a growing need to understand 
how a given nanoparticle’s physical and chemical 
properties affect biological activity and toxicity. 
Despite the many advantages given by their size 
(i.e., they can easily pass through the skin bar-
rier), some unpredictable events could occur as 
well. For example, nanoparticles may interfere 
with some functions of proteins on the surface 
of cells, or be taken up into cells and bind to 
intracellular molecules. 

Furthermore, as of today, there is no specific 
European, American or international stan-
dard on the toxicology and biocompatibility of 
nanoparticles. Thus, while these products are 

already in use, further research on these medical 
devices and development of standards on bio-
compatibility must be extended to the applied 
science of nanotechnology.
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