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ABSTRACT Apoptosis is a process of major biomedical interest, since its ineffectiveness or inappropri-
ate activation appears to be involved in the pathogenesis of a broad variety of human diseases (neoplasia,
autoimmune disorders, viral and neurodegenerative diseases, to name a few). On this topic, extensive
experimental work has allowed in the past years the clarification of the complex biochemical machinery
that commits a cell to apoptosis and executes the death program. As to the signaling mechanisms, it is now
evident that apoptosis can be initiated by different stimuli and/or genetic programs that are differentially
decoded inside the cell. While the past years have witnessed a major advancement on this topic, much still
needs to be learned of the cross-talk between the various signaling pathways involved in decoding the
apoptotic stimuli, as well as the activation of other cell functions. In this review we first describe the prop-
erties and activation mechanisms of the caspases, the effector proteases of apoptosis. In the second part we
discuss the current evidence for the involvement of calcium, the ubiquitous second-messenger decoding a
wide variety of physiological stimuli, and highlight the potential targets of the apoptotic calcium signal.
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BIOCHEMISTRY OF APOPTOSIS: CASPASES AND
REGULATORY MECHANISM

Apoptosis is a genetically regulated (programmed
cell death) and finely tuned process of cell elimination
essential for the embryogenesis, development, and tis-
sue homeostasis of multicellular organisms [Kerr et al.,
1972; Raff et al., 1993]. Apoptosis takes part in the nor-
mal development and functions of organisms as different
as nematodes [Ellis et al., 1991; Hengartner and Horvitz,
1994; Vaux and Korsmeyer, 1999], insects, or humans.
Dysregulation or impairment of apoptosis can therefore
have deleterious consequences. In humans, important
pathological conditions such as neurodegenerative and
autoimmune diseases, cancer, or AIDS [Thompson, 1995;
Fisher et al., 1995; Drappa et al., 1996; Uren and Vaux,
1996; Hetts, 1998] have defective apoptosis as the main
cause. Cell death by apoptosis is accompanied by a ste-
reotyped and interconnected series of events among

which cell collapse, formation of membrane blebs, chro-
matin condensation, and DNA degradation are well rec-
ognized. Selective degradation of intracellular substrates
during apoptosis also occurs and it is mainly due to the
activity of a recently identified family of highly conserved
cysteine proteases, named caspases (for cysteinyl aspar-
tate-specific proteinases) [Alnemri et al., 1996; Nicholson
and Thornberry, 1997; Nagata, 1997; Thornberry and
Lazebnik, 1998]. The importance of caspases in the ex-
ecution of the apoptotic program is emphasized by the
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fact that inhibition of their activity reduces apoptosis,
suggesting that at least part of the substrates they cleave
are indispensable for cell life. Caspases selectively cleave
a set of about 100 targets, although the estimated num-
ber could be around 200 [Nicholson, 1999]. An essential
requirement for their proteolytic activity is an aspartate
residue in the P1 position of the substrate. Cleavage by
caspases usually results in the degradation and inactiva-
tion of their substrates, e.g., the enzymes involved in DNA
cleavage and repair (DNA-PK, PARP, topoisomerase-I,
MCM3, DFF, CAD) with the consequent impairment of
DNA repairing machinery [Kaufmann et al., 1993;
Lazebnik et al., 1994]. Proteolytic cleavage by caspases
can in some cases activate their substrates, e.g., by re-
moval of regulatory domains or inactivation of regula-
tory subunits (SREBP, PKCs, cPLA2, PAK2, Bid).
Structural components of the cytoskeleton (gelsolin,
fodrin, catenins) [Kothakota et al., 1997] and nuclear
membrane (lamin A, B1) are also cleaved by caspases
during apoptosis [Oberhammer et al., 1994; Rao et al.,
1996]. Proteins involved in signal transduction (Raf-1,
protein kinases, protein phosphatases) or in the process-
ing of cytokine precursors (proIL-1β, proIL-16, proIL-
18) have also been identified as caspase substrates.
Inhibition of cytokine secretion can have important con-
sequences for viral infection. Viruses have evolved pro-
teins capable of inhibiting caspases involved in the
immune response and cell death, thus preventing pro-
duction of inflammatory cytokines and apoptosis through
death receptor activation, an outcome that would elimi-
nate infected cells. A nice example of this defensive
mechanism is that adopted by a cowpox virus that pro-
duces a caspase inhibitor named CrmA (cytokine response
modifier A), which blocks casp-1 and casp-8 [Ray et al.,
1992; McFadden et al., 1995; Komiyama et al., 1994].
Another strategy adopted by viruses to inhibit the
apoptotic response of the infected cell is the expression
of FLICE-inhibitory proteins (vFLIPs), interfering with
the signaling of the death receptors [Thome et al., 1997;
Glykofrydes et al., 2000]. Inhibitors of apoptosis (IAPs)
have also been found in organisms as different as yeasts,
nematodes, insects, and mammals, where they seem to
play multiple roles [Fraser et al., 1999].

CASPASES (FIG. 1)

Fourteen mammalian members have been identi-
fied so far. They represent a multigene family that can be
divided into two major subfamilies comprising enzymes
either related to caspase-1/ICE or to the mammalian
counterparts of CED-3 [Nicholson, 1999]. They can also
be grouped on the basis of the substrate preference, the
length of their prodomain, or by participation in apoptosis
or inflammation. Two major gene clusters have been iden-
tified: one maps to chromosome 11q22.2-q22.3 and com-

prises genes encoding caspases-1, -4, -5; while the sec-
ond is located on chromosome 2q33-q34 and encodes
caspases-8 and -10 [Nasir et al., 1997; Rasper et al., 1998].

Caspases are synthesized as enzymatically inert
zymogens (procaspases) consisting of three main parts: a
prodomain and a large and a small subunit that are split
by cleavage at two aspartate sites [Asp (P1)-X(P1′)]. The
generated fragments (large and small subunits) associate
to form dimers or tetramers: the active caspase [Earnshaw
et al., 1999]. The large subunit contributes to the active
site with a Cys and a His residue, whereas both subunits
contribute to form the S1 subsite that recognizes the cru-
cial aspartic acid of the substrate [Wilson et al., 1994;
Rano et al., 1997; Rotonda et al., 1996].

With respect to the prodomains, caspases can be
distinguished into the so-called Class I or “regulatory
caspases” or caspases with long prodomains, and Class
II or “effector caspases,” with short prodomains. Casp-1,
-2, -4, -5, -8, -9, -10, -11, -12, and -13, belong to the first
group and are thought to play a function in the recruit-
ment-activation steps, while casp-3, -6, -7, and -14 can
be ascribed to the second group and are thought to be
downstream in the activation cascade.

Caspases can be activated in different ways, de-
pending on the length and sequence of their prodomains.
Caspases with long prodomains can be activated at the
death domains (DD) of cytotoxic receptors (CD95/Fas/
APO-1, TNFR1, etc.) [Tartaglia et al., 1993] through

Fig. 1. A: Intracellular events triggered by death receptors activation. B:
Schematic representation of procaspase cleavage.
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homophilic interactions with adaptor molecules coupling
caspases to the receptors [Chinnaiyan et al., 1995; Boldin
et al., 1995, 1996; Muzio et al., 1996]. Recruitment be-
tween CARD-domains such as that involved in apoptosis-
activating factor 1 (Apaf-1) -mediated activation of
procasp-9, or RAIDD-mediated activation of casp-2 has
also been shown.

Transactivation of caspases is also possible. Due to
the Asp-X site, procaspases can be cleaved by other
caspases (casp-9 activates procasp-3, casp-3 activates
procasp-6, etc.). Granzyme B released by T lymphocytes
can also activate caspases [Darmon et al., 1995; Andrade
et al., 1998] and a recent report showed that at least
procasp-3 can be activated by binding to RGD peptides
[Buckley et al., 1999].

Caspase Members

Casp-1 is synthesized as a 45-KDa zymogen (p45)
which originates two subunits (p10 and p20) that associate
to form the active caspase [Thornberry et al., 1992]. Casp-
1 is mainly localized in the cytoplasm and translocates to
the nucleus during apoptosis. Casp-1 has been also found
on the external surface of the plasma membrane, where it
can cleave secreted proIL-1β. This caspase has been rec-
ognized as the enzyme responsible for the processing of
proIL-1β and proIL-18 in their mature biologically active
forms [Ceretti et al., 1992; Thornberry et al., 1992; Gu et
al., 1997; Dinarello, 1998]. Casp-1 can be recruited at the
DD of death receptors [Miura et al., 1993]. Inhibition of
its activity slows the progression of Huntington’s disease
in mice [Ona et al., 1999]. Monocytes from casp-1 knock-
out mice (casp-1–/–) do not secrete IL-1β upon treatment
with LPS or nigericin [Kuida et al.,1995; Li et al., 1995];
furthermore, and quite intriguingly, production of IL-1α
is also impaired, suggesting that casp-1 activity is required
for IL-1α secretion.

Casp-2 (ICH-1/Nedd2) is present in two splicing
variants of 435 and 312 amino acids, respectively, named
casp-2L/ICH-1L (proapoptotic) and casp-2S/ICH-1S

(antiapoptotic) [Wang et al., 1994]. Procasp-2 can bind
the adaptor molecule RAIDD (RIP-associated Ich-1/
CED-3 homolog protein with a DD). Casp-2 is found in
the mitochondrial matrix and translocates to the cyto-
plasm during apoptosis [Susin et al., 1999a]. Casp-2 has
also been found in the nucleus [Colussi et al., 1998]. New-
born casp-2–/– mice show a reduced number of facial mo-
toneurons. Deficiency of casp-2L in ovary tissue leads to
an increase in the number of oocytes that are also refrac-
tory to some apoptotic inducers.

For its central role in apoptosis, casp-3 (YAMA/
apopain/CPP32) is one of the most thoroughly investi-
gated caspases. Procasp-3 has a molecular mass of 32 kDa
and upon cleavage generates large and small subunits of
17 kDa or 20 kDa, and 12 kDa, respectively. Casp-3 trans-

locates from mitochondria to the cytosol and from cyto-
sol to the nucleus. It is highly expressed in lymphoid cell
lines and can be activated in vitro by granzyme B. Casp-
3 is responsible for the cleavage of a large number of
substrates. The DNA-repairing enzyme poly(ADP ribose)
polymerase (PARP) is a target of casp-3 and undergoes
inactivation upon cleavage. Casp-3 can also mediate pro-
cessing and secretion of IL-16 [Zhang et al., 1998]. Cleav-
age of huntingtin, a protein involved in Huntington’s
disease by casp-3, has also been demonstrated [Goldberg
et al., 1996]. Casp-3–/– mice show hyperplasia in the brain,
accompanied by skull defects. An excessive number of
neurons is found, particularly in cortical areas, as a con-
sequence of decreased apoptosis during embryonic de-
velopment [Kuida et al., 1996].

Casp-4 (ICErelII/TX/ICH-2) and casp-5 (ICErelIII/TY)
show high homology [Munday et al., 1995]. Casp-6 (Mch2)
translocates from the cytoplasm to the nucleus during
apoptosis. Casp-6–/– mice seem to have a normal develop-
ment [Zheng et al., 1999]. Casp-7 (Mch3/CMH-1/ICE-
LAP3) translocates from the cytosol to mitochondria and
the microsomal fraction; activation and translocation of casp-
7 correlates with the cleavage of a marker of the micro-
somal compartment, SREB-1 [Chandler et al., 1998]. Casp-
7–/– mice die at the embryonic stage.

Casp-8 (FLICE/Mch5/MACH) is recruited at the
CD95 and TNFR1 through interaction of the death ef-
fector domains (DEDs) present on both FADD (Fas-as-
sociated protein with death domain) and TRADD
proteins. A role for casp-8 in the regulation of muscle
development and erythropoiesis has been hypothesized.
Casp-8–/– mice die in utero and show impaired heart for-
mation and abundant hemorrhage in the liver and abdo-
men. Defects in these systems could be due to impaired
signaling of death receptors such as CD95, DR3, or DR5,
as similar abnormalities were found in FADD-deficient
mice [Yeh et al., 1998].

Casp-9 (Mch6/ICE-LAP6) is localized in the mito-
chondrial matrix, but it translocates to the cytosol upon
activation [Susin et al., 1999a]. Phosphatidylserine (PS) flip-
ping is impaired in casp-9–/– thymocytes induced to un-
dergo apoptosis with dexamethasone, suggesting that this
caspase or another casp-9-activated caspase could be re-
sponsible for PS exposure. As for casp-3–/– mice, casp-9–/–

knockouts show increased neuronal number in the brain.
Casp-10 (Mch4/FLICE-2) has two DED sequences and
like casp-8 is thought to interact with FADD. Mutations
in the casp-10 gene are responsible for defective apoptosis
of lymphocytes and dendritic cells in autoimmune lympho-
proliferative syndrome type II [Wang et al., 1999a]. Casp-
11 is involved in inflammation and is activated by cathepsin
B [Schotte et al., 1998]. Murine casp-11 interacts with and
activates casp-1; casp-11–/– mice are resistant to lipopolysac-
charide-induced endotoxic shock [Wang et al., 1998]. Casp-



MOLECULAR MACHINERY 561

12 is localized in the endoplasmic reticulum (ER)
[Nakagawa et al., 2000] and is activated by ER stress. Casp-
13 (ERICE) [Humke et al., 1998] shows a high homology
with casp-1. Its overexpression induces apoptosis in dif-
ferent cell lines and it is activated by casp-8. It has been
hypothesized that casp-13 could have a role in receptor-
stimulated cell death.

Casp-14 (MICE) has a very short prodomain and
interacts preferentially with caspases bearing long pro-
domains (casp-1, casp-2, casp-4, casp-8, casp-10) [Hu et
al., 1998]. In mice, expression of casp-14 is high in em-
bryonic tissues, but absent in the adult.

MITOCHONDRIA RELEASE APOPTOTIC FACTORS

Mitochondria play an important role in the ampli-
fication of the apoptotic process by releasing proapoptotic
factors such as cytochrome c (cyt c), apoptosis-inducing
factor (AIF), and the recently identified Smac/DIABLO.
For a long time the only known role of cyt c was that of
catalyzing the transfer of electrons between Complex III
and IV in the mitochondrial respiratory chain. More re-
cently, an additional surprising function has been discov-
ered for cyt c in apoptosis: during the apoptotic process
this protein translocates from the mitochondrial inter-
membrane space to the cytoplasm, forming a complex
with Apaf-1, a mammalian homolog of Ced-4, and
procasp-9. This caspase is then activated and can in turn
activate procasp-3 [Li et al., 1997; Zou et al., 1997]. Ad-
dition of cyt c to cytosolic extracts activates procaspases.
Microinjection of cyt c is known to induce activation of
caspases and apoptosis in a Bcl-2-inhibitable manner
[Zhivotovsky et al., 1998; Brustugun et al., 1998]. The
flavoprotein AIF is an oxidoreductase synthesized in the
cytosol and imported into the mitochondrial intermem-
brane space. Given that in cell-free systems AIF induces
chromatin condensation and large-scale DNA fragmen-
tation [Susin et al., 1999b; Lorenzo et al., 1999; Daugas
et al., 2000], it has been suggested that AIF is released
from mitochondria during apoptosis and concurs to
nuclear modifications. The proapoptotic factor Smac/
DIABLO [Du et al., 2000; Verhagen et al., 2000] is also
located in the mitochondrial intermembrane space and
is released upon induction of apoptosis. Smac binds to
and inactivates IAPs, allowing aggregation of Apaf-1 and
casp-9 and the consequent formation of the apoptosome
[Srinivasula et al., 2000].

Moreover, several different pro- (Bad, Bak, Bax,
Bik, Bid, Bcl-XS) or antiapoptotic (Bcl-2, Bcl-XL, Mcl-1,
A1) proteins belonging to the Bcl-2 family [Adams and
Cory, 1998] reside in or translocate to the mitochondria.
Since some of these proteins (Bcl-2, Bax, Bcl- XL, Bid)
can form pores in lipid membranes [Schendel et al., 1997;
Minn et al., 1997], it was hypothesized that this prop-
erty could allow them to collaborate in the formation of

multimeric complexes in the mitochondrial membrane.
Bcl-2 is also known to be localized on the outer surface
of the nuclear envelope and of the ER membrane. This
oncogene inhibits release of cyt c during apoptosis [Kluck
et al., 1997], but it has also been hypothesized that Bcl-
2 could prevent apoptosis by acting on the ER Ca2+ pool,
although no general consensus on the mechanism in-
volved has been reached so far [He et al., 1997; Kuo et
al., 1998; Pinton et al., 2000; Foyouzi-Youssefi et al., 2000].
Inhibition of the import of the apoptogenic protein p53
to the nucleus by Bcl-2 has been also shown [Beham et
al., 1997]. The proapoptotic Bcl-2 family member Bid is
normally located in the cytoplasm. It can be processed
by caspases, as it has a casp-8 cleavage site. Caspase
cleavage of inactive p22 BID gives a major p15 and mi-
nor p13 and p11 fragments. The p15 portion (tBid) can
translocate to the mitochondria and induce release of
cyt c [Luo et al., 1998; Kim et al., 2000]. Bid can also
induce oligomerization and insertion of Bax into the outer
mitochondrial membrane [Eskes et al., 2000]. Mice de-
ficient for Bid injected with an anti-CD95 antibody are
resistant to CD95-induced hepatocellular apoptosis and
show no activation of casp-3 and casp-7 and no cyt c
release. Bad is phosphorylated by calcineurin and trans-
locates to the mitochondrial outer membrane forming
heterodimers with Bcl-XL and promoting apoptosis
[Wang et al., 1999b]. An increase in the mitochondrial
volume in apoptotic cells has also been shown [Vander
Heiden et al., 1997], thus leading some authors to hy-
pothesize that release of cyt c could be the consequence
of the rupture of the outer mitochondrial membrane,
although release of cyt c can also occur independently
of this phenomenon [Doran and Halestrap, 2000; Kim
et al., 2000]. According to some authors, the apoptotic
process is preceded by collapse of the mitochondrial
potential, opening of a multiprotein structure named the
permeability transition pore (PTP) [see Bernardi, 1999b,
for a detailed review]. The PTP assembles at sites of con-
tacts between the inner and outer mitochondrial mem-
branes, swelling the matrix and rupturing the outer
membrane with the ensuing change in the permeability
of the outer mitochondrial membrane. Release of
apoptogenic factors from mitochondria follows [Petronilli
et al., 1994; Skulachev, 1996; Bernardi et al., 1998; Petit
et al., 1998]. According to other authors, the release of
cyt c and the activation of caspases occur before and in-
dependently of the loss of mitochondrial membrane po-
tential [Bossy-Wetzel et al., 1998; Finucane et al., 1999;
Li et al., 2000a].

INVOLVEMENT OF CALCIUM (FIG. 2)
Calcium Signaling Alterations in Apoptosis
When the systems responsible for the regulation of

cellular Ca2+ homeostasis are irreversibly compromised,
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a cell is condemned to die. Cell death can occur either in
a disordered manner, by necrosis (i.e., through activa-
tion of Ca2+-activated hydrolyzing enzymes), or in a more
controlled way, by apoptosis.

The possibility that apoptosis is also regulated by more
subtle alterations in intracellular Ca2+ homeostasis is now
supported by a variety of experimental evidence. In neu-
rons and other cell types, for example, an uncontrolled in-
crease in the intracellular Ca2+ concentration ([Ca2+]i) such
as that induced by alterations of ER Ca2+ pool is sufficient
to induce apoptosis [Nicotera and Orrenius, 1992]. Indeed,
pharmacological agents such as thapsigargin and cyclopia-
zonic acid, which induce large increases in the cytosolic
Ca2+ concentration, by emptying the intracellular Ca2+

stores, have been shown to induce apoptosis in a murine
lymphoma cell line [Bian et al., 1997].

Indirect support for this hypothesis comes from the
demonstration that overexpression of cytosolic Ca2+ buff-
ering proteins such as calbindin-D28K protects neurons
from apoptosis. Along the same lines, overexpression of
calbindin-D28K [Dowd et al., 1992] was shown to block
the proapoptotic actions of mutant presenilin 1 [Guo et al.,
1998], reducing oxidative stress and preserving mitochon-
drial functions. The action of Ca2+ on neuronal survival is,
however, complex. Excess Ca2+ promotes apoptosis, but
controlled, small increases in cytosolic [Ca2+] have benefi-
cial effects. Thus, inhibition of calcium signaling through
glutamatergic Ca2+ channels, for example, by ethanol (which
blocks NMDA receptor-dependent Ca2+ signaling), causes
massive neuronal apoptosis during brain development
[Ikonomidou et al., 1999, 2000]. Similarly, a modest increase
of [Ca2+]i promotes the survival of neurons in culture [Gallo
et al., 1987; Koike et al., 1989].

In addition to the numerous studies that, especially
in neuronal cells, demonstrate that a dysregulation of Ca2+

homeostasis promotes cell death, a few additional pieces
of evidence support the notion that Ca2+ plays a key role
in cell death. For example, in familial Alzheimer’s dis-
ease (FAD) (i.e., cases exhibiting a clear Mendelian (au-
tosomal dominant) transmission), there are mutations in
two genes encoding closely related (~70% identical) pro-

teins, the presenilins (PS1 and PS2). While these muta-
tions appear causally linked to the production of β-amy-
loid and neuronal degeneration, their pathogenic
mechanism is still undefined. Recent evidence indicates
that their primary role could be that of modulating Ca2+

signaling in neuronal cells by controlling Ca2+ release
from intracellular stores. Moreover, presenilins have been
shown to interact with antiapoptotic members of the Bcl-
2 family and mutations of these genes result in an in-
creased susceptibility to apoptotic stimuli [Mattson et al.,
2000]. A second line of evidence pointing to a key role
for Ca2+ in apoptotic cell death comes from the demon-
stration that oncogenes that protect against cell death
perturb intracellular Ca2+ homeostasis. The first example
was provided by the study of the prototype of this class
of oncogenes, bcl-2. The bcl-2 product shows a unique
intracellular distribution, as it is localized in organelles
(i.e., ER and mitochondria) having an important role in
controlling Ca2+ signaling and homeostasis. It has been
demonstrated that Bcl-2 can induce a decrease in the Ca2+

concentration of the ER by increasing the leak of the cat-
ion from this organelle [Pinton et al., 2000; Foyouzi-
Youssefi et al., 2000]. These data are in agreement with
the observation that Bcl-2 can form pores in lipid mem-
branes [Minn et al., 1997], thus allowing efflux of the cat-
ion from the organelle lumen. Altered Ca2+ handling in
Bcl-2 overexpressing cells could thus account, at least
partially, for its antiapoptotic function.

Another interesting example along this line is rep-
resented by an oncogene recently described in a human
hepatocarcinoma. This oncogene is generated by the in-
tegration of the hepatitis B virus genome in the gene
encoding the protein SERCA1. Viral activation was
shown to cis-activate SERCA1 chimeric transcripts with
splicing of exon 4 and/or exon 11. Splicing of exon 11
creates a frameshift and a premature stop codon in exon
12. The encoded protein lacks most of the cytosolic N
and P domains and critical Ca2+-binding regions of the
transmembrane region. This protein is incapable of ac-
tive Ca2+ pumping [Chami et al., 2000], but is causally
involved in the neoplastic phenotype. Although the mo-
lecular mechanism of this oncogene has not been ex-
plained yet, it may be speculated that the mutated
SERCA could either interfere with the activity of endog-
enous pumps and/or it could act as a Ca2+ leak pathway
from the ER. These data are consistent with the recent
observations that overexpression of SERCA in HeLa cells
increases the susceptibility of cells to apoptotic agents
[Ma et al., 1999] (Pinton et al., unpublished observations).

Intracellular Targets of a Ca2+-Mediated
Apoptotic Factor

The evidence, presented in the previous section,
supporting a role for Ca2+ as a messenger of apoptosis,

Fig. 2. Putative Ca2+-activated effectors during apoptosis.
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may appear puzzling, given that the same transduction
mechanism is used for regulating a variety of cell func-
tions (ranging from the activation of cells to contract, se-
crete, move, and even divide). Indeed, widely diverse
physiological stimuli (e.g., neurotransmitters, hormones,
growth factors, etc.) induce (by opening Ca2+ channels
located in the plasma membrane or in intracellular stores)
increases in cytosolic Ca2+ concentration. These in-
creases, which exhibit a high degree of spatiotemporal
complexity (i.e., they may occur in propagating waves,
localized rises, or repetitive spikes) are specifically de-
coded into defined intracellular actions. In this scenario,
cell death could be one of the consequences of a Ca2+

signal that follows the recruitment of specific effectors
and/or the cooperation of other intracellular events. While
a complete understanding of this complex interaction
appears a challenging, but still distant goal, we discuss
here some of the potential transducers of the Ca2+-medi-
ated death signal, reviewing the evidence that well-known
mediators of Ca2+ action could be involved in apoptosis.

MITOCHONDRIA

Mitochondria are the paradigm of the double-
edged sword effect of Ca2+ on cell life and death. On the
one hand, work by our and other groups has shown that,
despite the low affinity of mitochondrial Ca2+ transport-
ers, large Ca2+ fluxes occur across the mitochondrial
membranes when a physiological stimulus elicits a [Ca2+]i

rise, because these organelles are not exposed to the
(lower) bulk [Ca2+]i increase, but to microdomains gen-
erated in the proximity of the open Ca2+ channels. In
other words, the strategic location of mitochondria close
to the source of the [Ca2+]i rise (the ER and/or the plasma
membrane) allows them to be exposed to [Ca2+] that meet
the affinity of their transporters and allows the rapid and
large accumulation of the cation in the matrix. In turn,
this accumulation has an important physiological role
because, by stimulating intramitochondrial effectors
(such as the Ca2+-dependent dehydrogenases of the
Krebs cycle), it allows the prompt tuning of organelle
metabolism (and hence ATP production) to the increased
needs of an activated cell [see Duchen, 1999; Rizzuto et
al., 2000, for review].

On the other hand, mitochondria, as discussed ear-
lier, are important checkpoints of the apoptotic process,
as they may release caspase co-factors [Berridge et al.,
1998; Mignotte and Vayssiere, 1998; Green and Reed,
1998; Bernardi, 1999a; Kroemer and Reed, 2000;
Desagher and Martinou, 2000; Duchen, 2000; Crompton,
2000]. Among the signals that promote this decisive event,
Ca2+ may have a central role. Indeed, in the as-yet un-
settled identification of the molecular mechanism of this
release, one of the favorite hypotheses involves a large
conductance nonspecific channel of the inner mitochon-

drial membrane, commonly referred to as the PTP or
mitochondrial megachannel.

Mitochondrial permeability transition became the
focus of intense research after the discovery that cyt c is
required for apoptosis in a cell-free system [Liu et al., 1996;
Zou et al., 1997]. PTP may participate in the regulation of
matrix Ca2+, pH, transmembrane potential, and volume.
PTP is a Ca2+-, voltage-, pH-, and redox-gated channel
that shows several subconductance levels and little, if any,
ionic selectivity [Bernardi 1999b; Crompton, 1999].

The PTP appears to operate at the crossroads of
two distinct physiological pathways, i.e., the Ca2+ signal-
ing network during the life of the cell, and the effector
phase of the apoptotic cascade during Ca2+-dependent
cell death. Accordingly, two different conformations of
the PTP have been suggested to exist: 1) a low-conduc-
tance state that allows the diffusion of small ions like Ca2+,
is pH-operated, and undergoes spontaneous closures; and
2) a high-conductance state that allows the nonselective
diffusion of large molecules and disrupts mitochondrial
structure and (indirectly) causes the release of proapop-
totic factors.

Ichas and Mazat proposed that the switching from
low- to high-conductance state is an irreversible process
that is strictly dependent on the saturation of the inter-
nal Ca2+-binding sites of the PTP [Ichas and Mazat, 1998].
Mitochondria that undergo the mitochondrial permeabil-
ity transition may cause cyt c release and thus initiate
apoptosis.

Transient pore opening might allow Ca2+ release fol-
lowing matrix Ca2+ overload [Bernardi, 1999b] as a protec-
tive mechanism against mitochondrial Ca2+ overload.

Different reports have shown that increased mito-
chondrial Ca2+ accumulation is a trigger for the release
of cyt c from the mitochondrial intermembrane space into
the cytosol. For example, Jurgensmeier et al. [1998] ob-
served that Ca2+ and the proapoptotic protein Bax in-
duce cyt c release from mitochondria via different
mechanisms, with the former involving organellar swell-
ing and outer membrane rupture and the latter occur-
ring through a swelling-independent mechanism.
Krajewski et al. [1999] showed that Ca2+ and Bax induced
the release of both cyt c and procaspase-9 (caspase-9 is
critical for cyt c-dependent apoptosis) into the superna-
tants of isolated mitochondria and Ca2+-induced release
was completely suppressed by cyclosporin A (an inhibi-
tor of PTP). Szalai et al. [1999] reported the cooperative
action of physiological stimuli causing mitochondrial Ca2+

accumulation and apoptotic agents in inducing the open-
ing of the PTP, with ensuing cyt c release. In agreement
with these results, we have observed that Bcl-2 causes a
decrease in agonist-dependent mitochondrial Ca2+ in-
creases [Pinton et al., 2000].

A role for mitochondrial Ca2+ homeostasis in the
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control of apoptosis is also proposed by Zhu et al. [2000a].
In this study, however, the triggering mechanism for the
activation of caspases is suggested to be a marked reduc-
tion in global calcium signaling obtained by incubating
the cells at low extracellular [Ca2+].

CYTOPLASMIC EFFECTORS
Calcineurin

Calcineurin is a calcium- and calmodulin-depen-
dent serine-threonine protein phosphatase. [see Rusnak
and Mertz, 2000, for review]. As a serine-threonine phos-
phatase, calcineurin participates in a number of calcium-
dependent signal transduction pathways. Calcineurin is
the only known serine-threonine phosphatase whose ac-
tivity is stimulated by Ca2+ [Liu et al., 1991]. Several
pieces of evidence indicate that calcineurin plays an im-
portant role in some types of apoptosis. For example: 1)
prolonged increases in cytosolic [Ca2+] lead to activation
of calcineurin, with ensuing cell death by apoptosis [Rao
et al., 1997], through a process blocked by Bcl-2 [Shi-
basaki and McKeon, 1995]; 2) calcineurin activity is es-
sential in the apoptotic death of murine T cell hybridomas
[Fruman et al., 1992]; 3) calcineurin can dephosphory-
late BAD (a proapoptotic member of the Bcl-2 family),
thus enhancing BAD heterodimerization with Bcl-XL and
promoting apoptosis [Wang et al., 1999]. On the latter
topic, it should be stressed that elevation of [Ca2+] does
not always turn on cell death, but can also have the op-
posite effect, i.e., protection from apoptosis. For example,
Yano et al. [1998] showed that a [Ca2+] increase, via acti-
vation of Ca2+/calmodulin-dependent protein kinase ki-
nase (CaM-KK), turns on protein kinase B, which
phosphorylates BAD and protects cells from death.

PKC
Protein kinases have been implicated both in the

upstream induction phase of apoptosis and in the down-
stream execution stage, as direct targets of caspases. In
this section we focus on the role of PKC, given that its
role in programmed cell death has been intensively in-
vestigated in the last few years. Other serine/threonine
protein kinases play a role in apoptosis, e.g., the mito-
gen-activated protein kinase (MAPK) family, cyclic AMP-
dependent protein kinase (PKA), and protein kinase B
(PKB), but their involvement has not been completely
characterized and the reader is referred to recent reviews
on this topic for more details [Cross et al., 2000].

The term “protein kinase C” (PKC) identifies a fam-
ily of phospholipid-dependent serine/threonine kinases
that are activated by diverse intracellular factors, includ-
ing diacylglycerol and Ca2+. The various PKC isoforms
have been subdivided into three classes: the classical, or
conventional, PKCs (α, βI, βII, and γ) that are activated
by Ca2+ and diacylglycerol; the novel PKCs (δ, ε, η, and θ)

that are activated by diacylglycerol, but are Ca2+-indepen-
dent; the atypical PKCs (λ and ζ) which are insensitive to
both Ca2+ and diacylglycerol [for review, see Cross et al.,
2000; Musashi et al., 2000; Dempsey et al., 2000].

As in the case of Ca2+, PKCs can have a dual role in
apoptosis, i.e., activation of specific PKC isoforms may
protect or induce cell death [Lavin et al., 1996]. Among
the classical PKCs, TPA (12-0-tetradecanoylphorbol-13-
acetate) induces cyt c release (and cell death) in U-937
leukemia cells by a PKC β-dependent mechanism
[Pandey et al., 2000]. In gastric cancer cells, indometha-
cin-induced apoptosis is in part mediated by differential
regulation of PKC isoform expression and enhanced ex-
pression of exogenous PKC β protects against indometha-
cin-induced apoptosis [Zhu et al., 2000].

Powell et al. [1996] demonstrated that in a cell line
derived from a human prostate cancer the presence on
the cell membrane of PKC α correlates with spontane-
ous apoptosis, while its absence is associated with resis-
tance to TPA-induced apoptosis.

Among the novel isoforms, most evidence supports
a key role of PKC δ. For example, Lynch et al. [2000]
showed that basic fibroblast growth factor inhibits
apoptosis of spontaneously immortalized granulosa cells
by reducing [Ca2+] changes through a PKC δ-dependent
pathway.

PKC δ appears to have a role also in the release of
cyt c from mitochondria. Indeed, TPA induces translo-
cation of PKC δ from the cytoplasm to mitochondria and
translocation of PKC δ results in release of cyt c and the
activation of caspase-3 [Majumder et al., 2000]. Mitochon-
drial localization is not unique to the PKC δ isoform, since
PKC α has been shown to be localized, in some cell types,
in mitochondria where it may cause Bcl-2 phosphoryla-
tion and suppression of apoptosis [Ruvolo et al., 1998].

Most of the examples described above concern
apoptosis induced in vitro, under selected experimental
conditions. A particularly interesting phenomenon, of
major physiological relevance (that involves both Ca2+

and PKC), is that related to the termination of the im-
mune response. To maintain T cell homeostasis, once the
antigen has been cleared activated lymphocytes are re-
moved by apoptosis [Russell et al., 1995]. This form of
apoptosis involves the TCR-induced expression of the
CD95 ligand (CD95L) on the surface of T cells [Brunner
et al., 1995; Nagata, 1997]. Once CD95L is expressed on
the T cell surface, it induces T cell apoptosis through
activation of CD95 [Ashkenazi and Dixit, 1998]. It has
been shown that PKC θ in cooperation with calcineurin
plays an essential role in regulating CD95 expression and
activation-induced cell death [Villalba et al., 1999].

A role in apoptosis appears to also be played by the
atypical isoforms. Ceramide, a lipid mediator of apoptosis,
increase PKC ζ phosphorylation and activity and the re-
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cent demonstration that PKC ζ moves to the nucleus upon
ceramide production suggests that it may regulate the
transcriptional apparatus during ceramide signaling
[Bertolaso et al., 1998].

Finally, direct support for a role of PKC in apoptosis
comes from the demonstration that the antibiotic calphostin
C (a potent PKC inhibitor) induces rapid apoptosis in hu-
man acute lymphoblastic leukemia (ALL) by two additive
effects: the inhibition of PKC and the modulation of a cyto-
solic Ca2+ rise. Indeed, calphostin C induces rapid Ca2+

mobilization from intracellular stores of ALL cell lines, and
its cytotoxicity for ALL cell lines well correlated with the
magnitude of this Ca2+ signal. In fact, calphostin C-induced
death is suppressed by loading the cells with the Ca2+

chelator BAPTA [Zhu et al., 1998, 1999].

Calpains

As mentioned above, many biochemical and genetic
studies on apoptosis have revealed that intracellular pro-
teases are key players in this process. In particular, early
studies have pointed to the primacy of caspase proteases
as mediators of the execution phase. More recently, how-
ever, there is evidence that proteases other than caspases,
in particular, calpains, may also participate in apoptosis.
Calpains are intracellular Ca2+-dependent proteases that
have been found in virtually all mammalian cells [see
Suzuki et al., 1995; Lane et al., 1992; Croall et al., 1991;
Carafoli et al., 1998, for reviews]. Calpain substrates in-
clude cytoskeletal and associated proteins, membrane
receptors and transporters, steroid receptors, alpha- and
beta-fodrin, calmodulin-dependent protein kinases, ADP-
ribosyltransferase (ADPRT/PARP), and the tau protein
[Chan et al. 1999; Wang, 2000].

A direct involvement of calpains in some apoptotic
programs has been recently demonstrated. In the neu-
ronal line P19, activation of calpains was shown to be an
early event that preceded the appearance of the typical
morphological hallmarks of apoptosis and caused degra-
dation of cytoskeletal proteins in the cell death program
activated by hydrogen peroxide. In particular, it was dem-
onstrated that calpains were responsible for the degra-
dation of cytoskeletal proteins and preceded the
appearance of the typical morphological hallmarks of
apoptosis [Ishihara et al., 2000]. In the pancreatic beta-
cell line MIN6, excess NO production was proposed to
induce apoptosis by causing an increase in intracellular
[Ca2+] and activation of calpains [Nakata et al., 1999]. A
similar effect was observed in PC12 cells, suggesting a
general role of calpains in neuronal (or neuroendocrine)
apoptosis under oxidative stress and Ca2+ influx [Ray et
al., 2000]. Whether the process involving calpains is an
alternative to that of caspases has not yet been deter-
mined. It should be mentioned, however, that recent re-
sults obtained in the U937 cell line suggest that cadmium

may induce apoptosis by two independent pathways, the
Ca2+-calpains-dependent and the caspase-mitochondria-
dependent pathways [Li et al., 2000b].

CONCLUSIONS

The past years have witnessed an explosive expan-
sion in our knowledge of the molecular mechanisms that
commit a cell to apoptosis and carry out the complex
series of biochemical reactions involved in this process.
Numerous and interacting triggers (genetic programs,
plasma membrane receptor activation, etc.) and regula-
tory mechanisms (effector systems, co-factors, inhibitors)
have been identified. The cross-talk between molecular
actors and signaling mechanisms of apoptosis is today a
major research topic, since, on the one hand, defects in
apoptosis allow neoplastic and virally infected cells to
escape elimination by the immune system, and on the
other inappropriate triggering of apoptosis is a cause of
serious neurodegenerative diseases (e.g., Alzheimer’s
and Parkinson’s disease). Thus, only complete under-
standing of how apoptotic signals are conveyed and de-
coded by different cell types may allow researchers to
directly and safely develop a tailored pharmacology of
apoptosis and to identify the molecular targets of inno-
vative drugs. In this context, wide interest has been gen-
erated by converging evidence demonstrating that the
best-characterized intracellular second-messenger, Ca2+,
can act as a mediator of apoptosis. This is an important
concept, because it implies that the same messenger can
decode extracellular stimuli not only into the most di-
verse patterns of cell response (secretion, contraction,
motility, and so on) but also in the major choice between
life and death: a Ca2+ signal is elicited by both growth
factor stimulation (with ensuing cell proliferation) and
apoptotic agents (causing cell death). The obvious con-
sequence is that the specificity of the different stimuli
must rest either in the complex spatiotemporal mode of
Ca2+ signaling and/or in the interaction with other trans-
duction pathways. In this review, we have summarized,
in the context of the biochemical mechanisms of
apoptosis, the increasing evidence supporting a role for
Ca2+ as a crucial regulator of biochemical pathways of
apoptosis and we have highlighted the intracellular ef-
fector systems. Although current work by many groups
will certainly shed light on these topics and soon make
this review obsolete, we hope that this brief summary
may prove useful in identifying and testing mechanisms
and pharmacological tools.
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