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Hepatic insulin resistance is a key feature of type 2
diabetes, and the consequent dysregulation of glucose and
lipid output from the liver are important contributors to
the observed hyperglycemia and hyperlipidemia. While
excessive lipid accumulation (1) and defective signaling by
protein kinase C (2) have been implicated in the past, the
full panoply of molecular mechanisms involved is still not
defined. Deeper insights would therefore be welcome in
the quest to identify new therapeutic approaches to the
disease (3).

Mitochondrial metabolism and its dysfunction are
well-known to contribute to metabolic dyshomeostasis
in type 2 diabetes, with impaired glucose oxidation
resulting from a failure to fully activate the intramito-
chondrial pyruvate dehydrogenase (PDH) complex (4).
Originally described as sites for the exchange of phospho-
lipids between organelles (5), mitochondria-associated
membranes (MAMs) represent close contact sites through
which endoplasmic reticulum (ER) communicates with
mitochondria supporting the transfer not only of lipids
but also the exchange of calcium (Ca2+) ions and other
species. MAMs play important roles in several signal
transduction pathways and the relevance of the ER–
mitochondria interface to human diseases, including
Alzheimer disease, cancer, and lysosomal storage disease
(6), is slowly emerging. In this issue, Tubbs et al. (7)
demonstrate the potential importance of MAM integrity
in insulin action and resistance in hepatocytes.

The association between ER and mitochondrial ho-
meostasis and insulin signaling has recently been a topic
of intense investigation and debate (8–10). Importantly,
a reduction in ER-mitochondrial cross talk, achieved by
liver-specific ablation of the regulator of mitochondrial
fusion, mitofusin (Mfn2), causes mitochondrial dysfunc-
tion, insulin resistance, and impaired glucose tolerance

(11). Moreover, the target for insulin signaling mamma-
lian target of rapamycin complex 2 (mTORC2) is localized
to MAMs and regulates their integrity (8). Tubbs et al.
reinforce the concept that MAMs play a critical role in
insulin signaling with an innovative new approach.

The techniques routinely used to study the MAMs are
based on analysis of ER-mitochondria contact sites via
electron microscopy, intracellular localization of MAM
markers (such as FACL-4 or SigmaR1) in combination
with microscopy techniques, or isolation of MAMs
through subcellular fractionations followed by Western
blot analysis (12).

Tubbs et al. optimize an in situ proximity ligation assay
using a protein of the outer mitochondrial membrane
(voltage-dependent anion channel, VDAC1), the inositol
1,4,5-trisphosphate receptor (IP3R) for the ER mem-
branes or the molecular chaperone glucose-regulated
protein 75 (Grp75) as probes (Fig. 1).

The new method extends the capabilities of traditional
immunoassays to include direct detection of protein
interactions and modifications with high specificity and
sensitivity. With this, and complementary techniques, the
group coordinated by Jennifer Rieusset (7) clearly dem-
onstrates a strong relationship between MAM integrity
and efficient insulin action in hepatic cells (Fig. 1). Indeed,
they demonstrate in vitro and in vivo that insulin action
is directly linked to the MAM formation and maintenance
and show that this is disrupted in murine models of type
2 diabetes.

Tubbs et al. also show that protein kinase B (PKB, also
known as Akt) is a critical kinase involved at the MAM
level, possibly interacting with IP3R1 and probably
mediating its phosphorylation, in turn regulating ER
Ca2+ release through IP3R1. However, it is possible that
other members of the IP3R family beyond type 1 may also
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be involved. Indeed, IP3R type 3 is the most abundant
IP3R isoform present at the MAM, and it seems to be the
only isoform whose induced PKB phosphorylation modu-
lates effectively the release of Ca2+ from the ER (8,13).

Importantly, the authors show that enhancement of
MAM formation restores hepatic insulin signaling. How-
ever, whether the original alterations cause, or result from,
insulin resistance is still unknown. It will be interesting,
therefore, to follow up this work to understand which
precise signal transduction mechanisms (Ca2+ signals,
reactive oxygen species, lipids, or all of these?) are in-
volved. Studies using liver cells from healthy or type 2
diabetic human donors will also be necessary to confirm
the relevance of this phenomenon to the disease in
humans.

An intriguing aspect of the present study is that the
role that cellular Ca2+ homeostasis plays in insulin signal-
ing has previously been unclear. Whereas several G-protein2
coupled receptor-linked hormones, such as vasopressin
(14), clearly lead to increases in both cytosolic and
mitochondrial Ca2+ in liver cells (15) by gating IP3R,
there is little evidence for changes in the concentration
of these ions in response to insulin (16). One possible
mechanism reconciling these earlier studies and the pres-
ent study is that a low, tonic level of Ca2+ outflow from
the ER into mitochondria is required to ensure that

insulin-derived signals are able to activate PDH (17). It
is also conceivable that insulin causes a highly localized
redistribution of Ca2+ between the ER and mitochondria
close to MAMs.

Finally, it will be important to learn whether MAM
integrity is required in other cell types as well as in
hepatocytes. Glucose-induced Ca2+ changes play well-
defined roles in the control of insulin secretion from pan-
creatic b-cells (18), whose failure ultimately drives the
progression toward frank type 2 diabetes (19). Whereas
mitochondrial integrity has been shown to be critical for
normal glucose sensing in b-cells (20), the role of ER-
mitochondria contacts (i.e., MAMs) has not been exam-
ined. Given that b-cells are probably also targets for
insulin action (21), alterations in MAM interaction in
these cells may be of particular importance. Likewise,
the role of MAMs in muscle tissue, where normal mito-
chondrial functions are vital to avoid insulin resistance
(2), is also an important question.

Understanding the interplay and the signaling speci-
ficity between ER and mitochondria thus appears to be an
important new goal in diabetes research. We hope the
article by Tubbs et al. (7) and future work may provide the
impetus for the development of new molecularly targeted
drugs, bringing the prospects of a new day for efficient
diabetes treatment closer to reality.

Figure 1—MAM integrity is required for the correct insulin signaling and action in hepatocyte. CypD, cyclophilin D; IMM, inner mitochondrial
membrane; MCU, mitochondrial Ca2+ uniporter; OMM, outer mitochondrial membrane; P, phosphorylated; PACS2, phosphofurin acidic
cluster sorting protein 2; PTEN, phosphatase and tensin homolog; SERCA, sarcoendoplasmic reticulum Ca2+ transport ATPase.
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