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Molecular mechanisms of cell death: central implication
of ATP synthase in mitochondrial permeability transition
This article has been corrected since Advance Online Publication and a corrigendum is also printed in this issue

M Bonora1, MR Wieckowski2, C Chinopoulos3, O Kepp4,5,6, G Kroemer4,5,6,7, L Galluzzi4,5,8,9 and P Pinton1,9

The term mitochondrial permeability transition (MPT) is commonly used to indicate an abrupt increase in the permeability of the
inner mitochondrial membrane to low molecular weight solutes. Widespread MPT has catastrophic consequences for the cell,
de facto marking the boundary between cellular life and death. MPT results indeed in the structural and functional collapse of
mitochondria, an event that commits cells to suicide via regulated necrosis or apoptosis. MPT has a central role in the etiology of
both acute and chronic diseases characterized by the loss of post-mitotic cells. Moreover, cancer cells are often relatively insensitive
to the induction of MPT, underlying their increased resistance to potentially lethal cues. Thus, intense efforts have been dedicated
not only at the understanding of MPT in mechanistic terms, but also at the development of pharmacological MPT modulators. In
this setting, multiple mitochondrial and extramitochondrial proteins have been suspected to critically regulate the MPT. So far,
however, only peptidylprolyl isomerase F (best known as cyclophilin D) appears to constitute a key component of the so-called
permeability transition pore complex (PTPC), the supramolecular entity that is believed to mediate MPT. Here, after reviewing the
structural and functional features of the PTPC, we summarize recent findings suggesting that another of its core components
is represented by the c subunit of mitochondrial ATP synthase.
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MITOCHONDRIAL PERMEABILITY TRANSITION AND CELL
DEATH
The expression ‘mitochondrial permeability transition’ (MPT) is
commonly used to indicate a brisk increase in the permeability of
the inner mitochondrial membrane to low molecular weight solutes
(o1.5 kDa). This results in the osmotic influx of water into the
mitochondrial matrix, followed by the structural and functional
collapse of affected mitochondria.1,2 According to current models,
MPT would be mediated by the so-called permeability transition
pore complex (PTPC), a supramolecular entity assembled at the
interface between the inner and the outer mitochondrial
membranes.1,3 The first description of MPT dates back to 1979,
when this phenomenon was shown to stem from the accumulation
of Ca2+ ions in the mitochondrial matrix and to be responsive to
Mg2+ ions as well as ADP.4 However, the interest in MPT dropped
immediately thereafter, as the process could not be given any
pathophysiological relevance. It was only in the mid-1990s when it
became evident that mitochondria have a central role in the
regulation of cell death elicited by several stimuli.5,6 Indeed, while
MPT affecting a limited fraction of mitochondria can be managed
by their autophagic removal,7 widespread MPT commits the cell to
death via regulated necrosis or apoptosis (Figure 1).2 MPT-driven
regulated necrosis mainly (but not only) reflects the bioenergetic

outcomes of MPT, that is, the immediate dissipation of the
mitochondrial transmembrane potential (Δψm) and the consequent
arrest in all Δψm-dependent mitochondrial activities, including ATP
synthesis.8,9 Conversely, MPT-driven apoptosis is mainly executed
by mitochondrial intermembrane proteins that are released into the
cytoplasm upon MPT, including (but not limited to) cytochrome c,
apoptosis-inducing factor, mitochondrion-associated, 1 (AIFM1, best
known as AIF) and diablo, IAP-binding mitochondrial protein
(DIABLO, also known as Smac).10–12 As the apoptotic phenotype
requires the activation of caspases,13 a family of cysteine proteases
that operate in an ATP-dependent manner,14 MPT may drive
apoptosis or regulated necrosis depending on the intracellular
availability of ATP.15 However, other parameters may determine, at
least in part, the catabolic pathways activated by MTP, including the
nitrosylation state of caspases,16 and the expression levels of
endogenous caspase modulators.17–19

Throughout the last two decades, robust genetic evidence has
incriminated MPT as a major etiological determinant in a wide
panel of acute and chronic disorders characterized by the
unwarranted loss of post-mitotic cells. These conditions include,
but are not limited to: (1) ischemia/reperfusion injury of the
brain,20 heart21–23 and kidney;24 (2) neurodegenerative disor-
ders;25 (3) toxic syndromes;26–28 (4) diabetes;29 and (5) myopathic/
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dystrophic disorders.30,31 Moreover, malignant cells have been
shown to exhibit defects in the PTPC or upstream signal
transduction cascades, underlying (at least in part) their intrinsic
resistance to both endogenous stress and various therapeutic
interventions.3,32 Along with the recognition that MPT has a
critical role in multiple pathophysiological scenarios, great interest
gathered around the possibilities that (1) pharmacological
inhibitors of MPT or mitochondrial outer membrane permeabiliza-
tion (MOMP),11,33,34 the major mechanism underlying intrinsic
apoptosis, would mediate therapeutically relevant cytoprotective
effects;35 and (2) pharmacological activators of MPT or MOMP
could be used to selectively kill neoplastic cells based on their
intrinsically elevated levels of stress.36,37 This translated into an
intense wave of investigation that unveiled multiple mechanistic
details about MPT and allowed for the characterization of various
pharmacological and endogenous MPT modulators.3,38 Thus,
besides the accumulation of mitochondrial Ca2+, major MPT
stimulators include reactive oxygen species, inorganic phosphate,
intracellular alkalinization, long chain fatty acids, as well as
atractyloside and carboxyatractyloside, both of which inhibit
members of the adenine nucleotide translocase (ANT) protein
family by locking them in cytoplasmic side open conformation.3

Conversely, among various molecules, MPT is inhibited by ATP and
ADP, NADH and NAD+, glutamate, as well as by bongkrekic acid,
which locks ANT family members in a matrix side open
conformation, 5-isothiocyanato-2-[2-(4-isothiocyanato-2-sulfophe-
nyl)ethenyl]benzene-1-sulfonic acid (DIDS), an inhibitor of voltage-
dependent anion channel (VDACs), and cyclosporine A (CsA),
which targets peptidylprolyl isomerase F (PPIF, best known as
cyclophilin D, CYPD).38

The MPT-inhibitory potential of CsA has been documented so
extensively, in vitro and in vivo, that this molecule is currently
considered as the gold standard means for the confirmation of
presumed instances of MPT.39 Nonetheless, caution should be
applied to interpret the effects of CsA, especially those observed
in vivo, as this chemical is endowed with potent immunosuppres-
sive properties (reflecting its ability to indirectly inhibit calci-
neurin).40 Thus, to ascribe with relative certainty a murine
phenotype to MPT, it is imperative to evaluate the in vivo
cytoprotective effects of CsA in Ppif� /� animals (see below), and
to demonstrate that these two experimental interventions show a
null epistatic interaction.
In spite of the intense experimental interest generated by MPT

throughout the last two decades, the precise molecular composi-
tion of the PTPC remains elusive.41 After summarizing the main
structural and functional features of the PTPC discovered so far,
here we discuss recent findings suggesting that one of its core
components is represented by the c subunit of mitochondrial ATP
synthase. A detailed discussion of the molecular mechanisms that
control MOMP goes beyond the scope of this review article, and
can be found in Tait and Green,11 Taylor et al.,14 Chipuk et al.33 and
Galluzzi et al.35

ARCHITECTURE OF THE PTPC
Core components
In the early 1990s, electrophysiological studies based on purified
mitoplasts (that is, mitochondria stripped of the outer membrane)
demonstrated that MPT corresponds to an significant increase in
the conductance of the inner mitochondrial membrane,42 point-
ing to the existence of a pore that would be responsible for this
transition. Such a ‘mitochondrial megachannel’ was rapidly found
to share several features with MPT, including its sensitivity to Ca2+

ions (which operate as activators) as well as to CsA and various
divalent cations, including Mg2+ (all of which operate as
inhibitors).42,43 Shortly thereafter, the mitochondrial megachannel
turned out to exhibit a voltage-dependent behavior, in thus far

Figure 1. Lethal effects of MPT. When the inner mitochondrial
membrane becomes permeable to low molecular weight solutes,
positively charged ions massively flow into the mitochondrial
matrix driven by its electronegative nature. This phenomenon,
which is commonly referred to as MPT, has two major conse-
quences. First, it coincides with the dissipation of the Δψm,
virtually abolishing mitochondrial ATP synthesis and several other
Δψm-dependent mitochondrial functions. Second, it drives the
massive entry of water into the mitochondrial matrix, causing an
osmotic imbalance that results in the breakdown of both
mitochondrial membranes. In turn, this provokes the release into
the cytosol of several factors that are normally confined within the
intermembrane space, including (but not limited to) cytochrome c
(CYTC), AIFM1, endonuclease G (ENDOG), DIABLO and HtrA
serine peptidase 2 (HTRA2). Thus, depending on multiple
parameters, including the global availability of ATP and
perhaps the expression levels of caspase inhibitors such as
X-linked inhibitor of apoptosis (XIAP), widespread MPT can
induce necrotic as well as apoptotic instances of cell death.
The latter are dominated by the CYTC-dependent activation of
the caspase-9 (C9) → caspase-3 (C3) cascade, which is indirectly
favored by both DIABLO and HTRA2. Conversely, the former
originate in large part from the bioenergetic crisis that is provoked
by MPT coupled to the caspase-independent endonucleolytic
activity of AIFM1 and ENDOG. APAF1, apoptotic peptidase-
activating factor 1; [Ca2+]m, mitochondrial Ca2+ concentration;
ROS, reactive oxygen species.
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resembling VDAC.44 In support of a critical role for VDAC in MPT,
purified VDAC molecules reconstituted in planar bilayers or
proteoliposomes were shown to form a dimeric channel that
exhibited electrophysiological properties compatible with those of
the mitochondrial megachannel.45 Such an unexpected link
between a protein of the outer mitochondrial membrane, VDAC,
and a phenomenon that involves the inner mitochondrial
membrane (i.e., MPT) casted suspicion on the actual composition
of the mitochondrial megachannel, raising the possibility that it
would be constituted by several proteins, not just one. Further
supporting this hypothesis, a ligand of the peripheral benzodia-
zepine receptor (which was already known to involve VDAC, ANT
and a third component)46 was found to elicit currents from
otherwise electrically silent mitoplasts.44

Brdiczka and colleagues confirmed the supramolecular nature
of the PTPC in 1996, when they documented (in the rat brain) the
presence of a complex comprising VDAC, ANT, hexokinase 1 (HK1)
and creatine kinase, mitochondrial 1 (CKMT1) and exhibiting MPT-
like electrical activity upon reconstitution in liposomes.47,48 Based
on its interacting partners (including VDAC and ANT)49 as well as
on its pharmacological profile,50,51 CYPD was soon suspected to
have a central role in MPT. In the late 1990s, purified ANT
molecules reconstituted in proteoliposomes were found to form
an oligomeric channel exhibiting PTPC-like functional properties.52

Cumulatively, these findings inspired a first PTPC model according
to which MPT would be mediated by a supramolecular entity
assembled at the interface between the inner and outer
mitochondrial membrane by the physical and functional interac-
tion of VDAC, ANT, HK1 and CKMT1. In line with its suborganellar
localization (the mitochondrial matrix), CYPD was considered by
this model as a regulator of the PTPC, but not as one of its pore-
forming subunits.
Robust genetic data generated in the mid-2000s significantly

challenged most components of its model. Thus, the simultaneous
knockout of the genes coding for two distinct ANT isoforms, that
is, Slc25a4 (encoding Ant1) and Slc25a5 (encoding Ant2), failed to
abolish the ability of murine hepatocytes to succumb to several
MPT inducers, including the Ca2+ ionophore Br-A23187, in a CsA-
inhibitable manner.53 In line with this notion, mitochondria
isolated from Slc25a4� /�Slc25a5� /� hepatocytes retained the
ability to undergo MPT in vitro upon exposure to a depolarizing
agent, yet became irresponsive to atractyloside and ADP.53

Similarly, the simultaneous genetic inactivation of three distinct
VDAC isoforms, namely, Vdac1, Vdac2 and Vdac3, neither altered
the propensity of murine fibroblasts to die when challenged with
hydrogen peroxide (an MPT inducer), nor did it influence the
ability of their mitochondria to undergo MPT in response to
Ca2+.54,55 At odds with these relatively minor effects, the
standalone deletion of Ppif turned out to mediate major MPT-
inhibitory and cytoprotective effects, in vitro as well as in vivo, in
several models of acute ischemic injury.20–22,56 In particular, the
absence of CYPD was shown to markedly increase the amount of
Ca2+ ions required to trigger MPT and to render this process
completely insensitive to CsA.20,56

Taken together, these data apparently demonstrate that ANT
and VDAC are dispensable for both the execution and the
regulation of MPT, while CYPD has a crucial role in the process.
This said, a central function for ANT in MPT cannot be formally
excluded yet, as at least two additional ANT isoforms turned out to
be encoded by the mammalian genome, namely, SLC25A6 (ANT3)
and SLC25A31 (ANT4).57,58 So far, no VDAC isoforms other than
VDAC1, VDAC2 and VDAC3 have been identified (source http://
www.ncbi.nlm.nih.gov/gene/). Nonetheless, the results of Baines
et al.54 were obtained with Vdac1� /�Vdac3� /� cells subjected to
the temporary depletion of Vdac2 by small-interfering RNAs,55 an
experimental system that appears somehow less robust than the
simultaneous deletion of all VDAC-coding genes (which cannot be
achieved as the knockout of Vdac2 is lethal).59 Finally, it seems

unlikely that CYPD, which is mainly localized within the
mitochondrial matrix, would constitute the actual pore-forming
component of the PTPC. In line with this notion, CYPD is currently
viewed as the major gatekeeper of MPT, regulating the opening of
the PTPC but not lining up the pore that physically allows for the
entry of low molecular weight solutes into the mitochondrial
matrix. This said, the possibility that CYPD may change
conformation and become able to form pores in the inner
mitochondrial membrane during MPT, similar to what BAX does in
the course of MOMP,60 has not yet been formally excluded.
Inorganic phosphate has been identified very early as an MPT-

promoting metabolite,61 suggesting that the PTPC would possess
a specific binding site. In physiological conditions, inorganic
phosphate is transported across the inner mitochondrial mem-
brane by members of the SLC protein family, including SLC25A3
(best known as PHC or PiC) and SLC25A24 (also known as APC1).62

Although PiC imports inorganic phosphate into mitochondrial
matrix coupled to either the co-import of H+ ions or the export of
OH� ions, APC1 mediates this process along with the export of
ATP and Mg2+ ions.62 In 2003, APC1 was suggested to be
responsible for the MPT-promoting activity of inorganic phos-
phate via an indirect effect on the mitochondrial pool of ATP and
ADP,63 a notion that has not been confirmed. Rather, it seems that
APC1 responds to increases in cytosolic Ca2+ levels by operating in
reverse mode, thus favoring the mitochondrial uptake of ATP and
ADP and inhibiting MPT.64 In 2006, PiC turned out to be the
functional target of viral mitochondria-localized inhibitor of
apoptosis, an antiapoptotic protein encoded by
cytomegalovirus,65,66 while in 2008 PiC was shown to bind CYPD
and ANT1 in cellula, an interaction that was potentiated by MPT-
inducing conditions and inhibited by CsA.67 Along similar lines, a
high-throughput genetic screen unveiled that PiC overexpression
promotes mitochondrial dysfunction coupled to apoptotic cell
death.68 Also in this study PiC was found to interact with ANT1 (as
well as with VDAC1), especially in the presence of MPT inducers.68

Moreover, the small-interfering RNA-mediated depletion of PiC
exerted cytoprotective effects.68 Together with previous data
indicating that the reconstitution of liposomes with purified PiC
molecules results in the formation of relatively unspecific pores,69

these findings pointed to PiC as to the possible pore-forming unit
of the PTPC. This hypothesis is incompatible with recent results
indicating that a consistent reduction in PiC levels does not alter
the ability of isolated mitochondria to undergo MPT in response to
Ca2+ ions.70 Thus, either PiC does not participate into the PTPC in a
significant manner, or very small amounts of PiC are sufficient to
mediate MPT. As a corollary, this suggests that the cytoprotective
effects of PiC depletion68 may not stem from the modulation of
MPT. Although the ability of PiC to influence mitochondrial
dynamics may be involved in this process,71 the exact molecular
mechanisms by which PiC promotes cell death under some
circumstances remain to be elucidated.

Regulatory components
Several proteins have been shown to regulate the activity of core
PTPC units (that is, VDAC, ANT and CYPD). These regulatory
components, which encompass cytosolic as well as mitochondrial
proteins, appear to interact with the PTPC backbone in a highly
dynamic manner.72

The translocator protein (18 kDa) (TSPO), a protein of the outer
mitochondrial membrane, constitutes the benzodiazepine-
binding component of the so-called peripheral benzodiazepine
receptor, an oligomeric complex involving VDAC and ANT (see
above).46 The physiological role of TSPO in steroid biosynthesis
was described as early as in 1989,73 and only a few years later
circumstantial evidence implicating TSPO in MPT began to
accumulate. For the most part, these studies reported the ability
of a series of endogenous (for example, protoporphyrin IX)74 and
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exogenous (for example, PK11195, Ro5–4864, diazepam)75,76 TSPO
agonists to elicit MPT in isolated mitochondria. In line with this
notion, the incubation of purified mitochondria with a TSPO-
blocking antibody reportedly inhibits several manifestations of
MPT.77 This said, the effects of TSPO ligands on cell death exhibit a
great degree of variability, ranging from cytoprotective,78,79 to
overtly lethal.80–82 Such a context dependency may stem from
several causes, including (but presumably not limited to) model-
intrinsic variables (including the expression levels of TSPO and
other benzodiazepine receptors) and the concentration of TSPO-
modulatory agents used, possibly linked to off-target effects.36,83

Various kinases have been shown to physically and/or functionally
interact with core PTPC units (at least in specific tissues, such as the
brain), including CKMT1 (which is localized in the mitochondrial
intermembrane space), HK1, HK2 as well as glycogen synthase
kinase 3β (GSK3β) and protein kinase Cε (PKCε).72 Some of these
kinases, including CKMT1, HK1 and HK2 do not phosphorylate
protein substrates, implying that their MPT-modulatory activity
originates either from their physical interaction with core PTPC
components or from their ability to catalyze metabolic reactions.
Besides binding VDAC1 and ANT1,47,48 CKMT1 phosphorylates
creatine to generate phosphocreatine, a reaction that is tightly
coupled to oxidative phosphorylation (and hence to the availability
of ATP and ADP).84,85 It remains to be formally demonstrated
whether the MPT-modulatory activity of CKMT1 originates from its
physical interaction with PTPC components or its catalytic activity.
HKs catalyze the rate-limiting step of glycolysis, converting glucose
into glucose-6-phosphate in an ATP-dependent manner.86 Both HK1
and HK2 interact with multiple VDAC isoforms, hence gaining a
preferential access to ATP exported from mitochondria.87 This
configuration (that is, the binding of HKs to VDAC) is associated with
an optimal flux through glycolysis as well as with major
cytoprotective effects.88 Accordingly, the administration of cell-
permeant peptides or chemicals that competitively displace HK2
from VDAC1 has been shown to kill several types of cells upon
MPT.89–92 However, it remains unclear to which extent such a
cytotoxic response reflects a direct modulation of the PTPC by HK2
rather than an indirect effect on the availability of antioxidants
(cancer cells exploit glycolysis to boost the pentose phosphate
pathway, which is critical for the regeneration of NAD(P)H and hence
reduced glutathione).93,94 The fact that the MPT-inducing activity of
peptides disrupting the HK2/VDAC1 interaction is inhibited by CsA
and bongkrekic acid, as well as by the ablation of Ppif, but not by
that of Vdac1 and Vdac3,95 suggests that the PTPC-regulatory
function of HKs mainly stems from a metabolic effect. Further
supporting this notion, HK1 has recently been found to exert major
cytoprotective effects in MPT-unrelated paradigms of death.96

Contrarily to CKMT1 and HKs, GSK3β and PKCε exert MPT-
modulatory functions that have been linked (at least partially) to
their ability to phosphorylate core PTPC components.97–99 For
instance, active GSK3β has been reported to phosphorylate
VDAC1, resulting in the MPT-stimulatory displacement of HK2,97

and VDAC2, promoting the consumption of ATP by ischemic
mitochondria (a process that is also expected to promote MPT),100

while GSK3β phosphorylated on Ser9 (that is, inactive) appears to
inhibit the PTPC by physically disrupting the ANT1/CYPD
interaction.101 Recently, the activation of GSK3β has also been
linked to the MPT-triggering phosphorylation of CYPD.102,103

However, formal evidence supporting the notion that GSK3β
directly phosphorylates CYPD is lacking.102 PKCε has been
reported to phosphorylate VDAC1, yet this post-translational
modification appears to promote, rather than destabilize, HK2
binding.98 However, as the activation of PKCε by a synthetic
peptide has been associated with the inactivating dephospho-
rylation of GSK3β,104 it is not clear whether the effect of PKCε on
the VDAC1/HK2 interaction in cellula actually reflects a direct
phosphorylation event or a GSK3β-dependent signaling circuitry.
As a matter of fact, the activation of several upstream signal

transducers, including AKT1, mammalian target of rapamycin
(mTOR), protein kinase A and protein kinase, cGMP-dependent,
type I (PRKG1, best known as PKG) reportedly converge on the
inactivation of GSK3β, hence mediating MPT-inhibitory
effects.99,105,106 A detailed description of these signaling pathways,
which have a significant role in ischemic conditioning and cardio-
protection, goes largely beyond the scope of this review.107

Of note, the core units of the PTPC have been shown to interact
with several components of the machinery that control MOMP,
including both pro- and anti-apoptotic members of the Bcl-2
protein family59,108–116 as well as p53.117,118 BCL-2 and BCL-2-like 1
(BCL-2L1, best known as BCL-XL) have been proposed to inhibit
MPT by regulating the opening state of VDAC1.111,112 This said,
whether the MPT-modulatory activity of anti-apoptotic BCL-2
family members originates from an increase or a decrease in
VDAC1 conductance remains a matter of debate. Irrespective of
this uncertainty, BAX, BAK1 and BCL-2-like 11 (BCL-2L11, a BH3-
only protein best known as BID) reportedly promote MPT-driven
apoptosis by interacting with ANT1 and/or VDAC1.108,110,119 Along
similar lines, BCL-2-associated agonist of cell death (BAD, another
BH3-only protein) has been shown to trigger a VDAC1-dependent,
BCL-XL-responsive mechanism of MPT.113 In this context, however,
MPT appears to result from the BAD-dependent displacement of
BCL-XL from VDAC1 rather than from a physical BAD/VDAC1
interaction.113 Finally, by sequestering the BAX-like protein BAK1,
VDAC2 reportedly exerts MOMP-inhibitory functions.59 Thus, the
molecular machineries for MOMP and MPT engage in complex,
mutually regulatory crosstalk.
Recent data indicate that a pool of p53 localized to the

mitochondrial matrix participate in MPT-driven regulated necrosis
by interacting with CYPD.117 These findings add to an increasing
amount of data arguing against the classical apoptosis/necrosis
dichotomy. BAX and BAK1 are indeed being implicated in several
paradigms of necrotic, as opposed to apoptotic, cell death,23,120

perhaps reflecting their ability to regulate mitochondrial
dynamics,23 or Ca2+ homeostasis.121–126 Further studies are
required to obtain precise insights into this issue.
In summary, in spite of a significant experimental effort, the

precise molecular composition of the PTPC remains elusive
(Figure 2). Accumulating evidence indicate that the mitochondrial
ATP synthase, the multiprotein complex that catalyzes the synthesis
of ATP while dissipating the chemiosmotic gradient generated by
the respiratory chain across the inner mitochondrial membrane,
constitutes a central PTPC component, as discussed below.

MITOCHONDRIAL ATP SYNTHASE: STRUCTURE, FUNCTION
AND IMPLICATION IN MPT
Molecular composition of mitochondrial ATP synthase
The mitochondrial ATP synthase is a large multiprotein complex
consisting of a globular domain that protrudes into the
mitochondrial matrix (F1 domain, also known as soluble compo-
nent) and an inner mitochondrial membrane-embedded domain
(FO domain), which are interconnected by a central and a lateral
stalk. Owing to this molecular arrangement, the ATP synthase is
also known as F1FO-ATPase.

127 Mammalian ATP synthases contain
15 different subunits: α, β, γ, δ, ε, a, b, c, d, e, f, g, A6L, F6 and O
(also known as oligomycin sensitivity-conferring protein, OSCP)
forming a fully functional holoenzyme with a total molecular
weight of ~ 600 kDa. The α, β, γ, a and c subunits exhibit a high
degree of homology to their chloroplast and bacterial counter-
parts. Moreover, the overall topology of the mammalian ATP
synthase as well as that of its F1 and FO components taken
individually are highly conserved across evolution.127–129 The
mammalian F1 domain is composed of three α/β dimers and
interacts with one copy of the γ, δ and ε subunits (central stalk) as
well as with the b, d, F6 and O subunits (peripheral stalk),
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providing a physical bridge between the soluble and
proton-translocating (FO) components of the holoenzyme.129–131

The FO domain contains a ring-shaped oligomer of c subunits
stabilized by binding of cardiolipin, a lipid that is highly enriched
in (if not confined to) the inner mitochondrial membrane.129,132 Of
note, the number of c subunits composing the so-called c-ring
varies to a significant extent across species (10 in humans).129

These components of the FO domain are highly hydrophobic and
contain a critical carboxyl group (most often as part of a Glu or
Asp residue) that is directly involved in the translocation of H+ ions
across the inner mitochondrial membrane (see below).133 The
remaining constituents of ATP synthase, that is, the a, e, f, g and
A6L subunits, are also part of the FO domain and interact with the
c-ring. In particular, the a subunit provides a physical dock for the
b subunit, while A6L appears to bridge FO to other components of
the peripheral stalk (Figure 3).129–131,134

The roles of individual F1FO-ATPase subunits in ATP synthesis
Mitchell’s chemiosmotic model, which is still largely accepted,
postulated that the F1FO-ATPase is able to dissipate in a controlled
manner the electrochemical gradient generated across the inner
mitochondrial membrane by respiratory chain complexes to
condense ADP and inorganic phosphate into ATP.135 Several

decades of investigation, focusing for a large part on bacterial and
bovine systems, have generated profound insights into the
molecular mechanisms whereby the mitochondrial ATP synthase
operate.129

According to current models, the electrochemical gradient built
up by the respiratory chain is dissipated as H+ ions flow between
the a subunit and the c-ring, imparting to the latter a relative
rotation that is passed to the γ and ε subunits.136 The rotation of
the central stalk (approximate radius = 1 nm) inside a cylindrical
lodge formed by the α3β3 hexamer (approximate radius = 5 nm)
has been shown to cause conformational changes in F1 that drive
ATP synthesis.136 Each β subunit contains a nucleotide-binding
site (which is localized at the interface with one of the adjacent α
subunits) and can assume three discrete conformations: (1) the so-
called βDP conformation, which is characterized by an elevated
affinity for ADP; (2) the so-called βTP conformation, exhibiting a
high affinity for ATP; and (3) the so-called βE conformation,
displaying reduced affinity for ATP.137 Importantly, these three
states invariably coexist on an individual F1 domain, implying that
the transition between conformations at distinct α/β interfaces is
coordinately regulated.137

The central stalk of ATP synthase can rotate up to 700 times/s
(depending on temperature, substrate availability and other
factors), and each 360° turn results in the synthesis of three ATP
molecules.137 Detailed studies revealed that the γ subunit of the
central stalk rotates in discrete 120° steps and that its interaction
with a β subunit in the βTP conformation causes the release of
ATP from the nucleotide-binding site (that is, the transition to the
βE state).138 Interestingly, it has been suggested that such discrete
120° steps may consist of 30–40° and 80–90° substeps, at least
when ‘slow’ ATPase variants (which release ATP at reduced rates)
are concerned.139 Of note, similar properties could be ascribed
neither to hybrid F1 subunits containing only 1 or 2 slow β
subunits,140 nor to so-called V1VO-ATPases,

141,142 variants of F1FO-
ATPases that generally operate in reverse mode to catalyze the
acidification of specific subcellular compartments.143 Thus,
whether the rotation of normal ATPases occurs in discrete
substeps o120° remains to be formally demonstrated.
Irrespective of this unresolved mechanistic issue, ATP synthases

appear to catalyze the condensation between ADP and inorganic
phosphate by virtue of a functional cooperation between a ‘rotor’
(formed by the c-ring coupled to the γ, δ and ε subunits) and a
‘stator’ (consisting of the α3β3 hexamer plus the a, b, d, e, f, g, F6,
A6L and O subunits).128 In this context, special attention should be
devoted to the peripheral stalk (composed of the b, d, F6 and O
subunits), which links the external surface of F1 to the a subunit of
FO.

144 This separate substructure appears to have two important
roles for ATP synthesis: (1) to counteract the tendency of the α3β3
hexamer to rotate along with the central stalk and the c-ring, and
(2) to anchor the a subunit.128 Interestingly, a and A6L are the only
subunits of the F1FO-ATPase to be encoded by the mitochondrial
genome,145 and are the last ones to be incorporated into the
assembling holoenzyme.146

At the ‘top’ of the F1 domain, the N-terminal regions of α
subunits interact with an OSCP monomer. Electron microscopy-
based structural studies of the ATP synthase of Saccharomyces
cerevisiae demonstrated that the C-terminus of the OSCP is located
approximately 90 Å away from the F1 domain.147 Of note, the
assembly of the latter appears to critically rely on the presence of
the ε subunit of the central stalk, which may also be involved in
the incorporation of c subunits into the c-ring.148 These findings
indicate that specific subunits of the F1FO-ATPase orchestrate the
assembly of the catalytically active holoenzyme.

Supramolecular organization of the ATP synthase. Native blue
electrophoresis-based experiments coupled to in-gel activity
assays have been used to demonstrate that the F1FO-ATPase
exists not only as a monomer, but also as a dimer and higher-

Figure 2. Possible configuration of the PTPC. According to current
models, MPT is mediated by the opening of a supramolecular entity
assembled at the juxtaposition between mitochondrial membranes.
Such a large multiprotein complex is commonly known as PTPC.
Structural and functional studies performed throughout the past
two decades suggest that multiple mitochondrial and cytosolic
proteins intervene in the formation or regulation of the PTPC, yet
the actual pore-forming unit of the complex remains elusive. These
proteins include (but are not limited to): various isoforms of VDAC,
ANT and HK, CYPD, PiC, TSPO, CKMT1, GSK3β, p53, as well as several
members of the Bcl-2 protein family. The precise composition of the
PTPC, however, remains elusive. Recent data indicate that the
mitochondrial ATP synthase, in particular, the c subunit of the FO
domain, has a critical role in MPT. Whether the c subunit
truly constitutes the pore-forming unit of the PTPC, however,
has not yet been formally demonstrated. IMS, mitochondrial
intermembrane space.
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order oligomers (mainly tetramers and hexamers).149,150 Such
oligomers are detectable when mitochondrial proteins are
solubilized with mild detergents, such as solutions that contain
limited amounts of digitonin.151 Conversely, when n-dodecyl β-D-
maltoside is used for solubilization, most ATP synthase complexes
are expected to appear in their monomeric form on native blue
gels. Electron cryotomography-based studies demonstrated that
the mammalian ATP synthase is arranged in 1 μm-long rows of
dimeric supercomplexes that are located at the apex of
mitochondrial cristae, a spatial configuration that favors effective
ATP synthesis under proton-limited conditions.152 Electron cryo-
tomography followed by subtomogram averaging also revealed
that ATP synthase monomers from S. cerevisiae form symmetrical
V-shaped dimers with an angle of 86°.153 Specific components of
the yeast F1FO-ATPase (that is, the e and g subunits as well as the
first transmembrane helix of subunit 4) appears to be required for
the formation of ATP synthase dimers.153–155 The critical involve-
ment of the e and g subunits in the dimerization of the F1FO-
ATPase has also been documented in the mammalian
system.156,157 Moreover, the dimerization of the mammalian
F1FO-ATPase reportedly requires the a and A6L subunits.146

Of note, it appears that ATP synthase dimers contribute to the
maintenance of the mitochondrial morphology as they promote
the formation of highly curved cristae ridges.153 In line with this
notion, as Podospora anserina (a filamentous fungus) ages, ATP
synthase dimers dissociate into monomers, a degenerative
process that is associated with the loss of mitochondrial
cristae.158 The ATPase inhibitory factor 1 (ATPIF1), a heat-stable
protein that inhibits ATP synthesis as it stimulates F1FO-ATPase to
operate in reverse mode,159,160 has also been implicated in the
dimerization of the ATP synthase.161 Crystallographic and electron
microscopy-based studies suggest indeed that dimeric ATPIF1
may stabilize ATPase dimers at the level of F1 domains.157,161

Importantly, the F1FO-ATPase synthesizes ATP from ADP and
inorganic phosphate only in the presence of an adequate proton-
motive force (pmf). In mitochondria, such a pmf is generated by

respiratory chain complexes, establishing across the inner
mitochondrial membrane the proton concentration gradient
(ΔpH) that underlies the Δψm.

162 Conversely, in the absence of
an adequate pmf, F1 avidly hydrolyzes ATP.162 However, this
mechanism accounts for the lethal effects of MOMP and MPT to a
very limited extent.1,11 Indeed, in response to declines in the
mitochondrial pmf (such as those induced by hypoxia), ATPIF1
inhibits the hydrolytic activity of F1, hence avoiding a potentially
lethal drop in intracellular ATP levels.163,164 In this context, it
should be emphasized that the F1FO-ATPase would consume ATP
of cytosolic origin only (1) if the Δψm exceeded the so-called
‘reversal potential’ of ANT, that is, the value of Δψm at which there
is no net exchange of ADP and ATP across the inner mitochondrial
membrane; and (2) ATP in the mitochondrial matrix could not be
provided by substrate-level phosphorylation.165–170 ATPIF1 has
recently been shown to limit the translocation of BAX to the outer
mitochondrial membrane under pro-apoptotic conditions, pre-
sumably as it prevents mitochondrial remodeling.171 These
findings lend further support to the notion that the molecular
machineries that regulate mitochondrial dynamics, MOMP and
MPT, engage in an intimate, mutually regulatory crosstalk.172–174

The mitochondrial ATP synthase gives the ‘wedding ring’ to the
PTPC. Several parameters that alter the threshold for the
induction of MPT have also been shown to regulate the catalytic
activity of the ATP synthase.175 First, the hydrolytic activity of the
F1FO-ATPase is strongly inhibited by the concurrent binding of
ADP and Mg2+, two potent MPT inhibitors, to its catalytic site, a
situation known as Mg-ADP block.162 ADP and Mg2+ ions are
required for ATP synthesis and limit the catabolic activity of the
ATP synthase in a non-competitive manner that differs from
simple product inhibition.176–180 Of note, the Mg-ADP block can
be resolved by an increase in pmf, expelling Mg2+ ions and ADP
from the inhibitory site.162,181 Inorganic phosphate, a prominent
inducer of MPT, has also been proposed to relieve the Mg-ADP
block.162,182,183 Thus, inorganic phosphate concentrations >5mM

Figure 3. Molecular and supramolecular organization of the mammalian ATP synthase. The mitochondrial ATP synthase consists of a globular
domain that protrudes into the mitochondrial matrix (F1 domain) and an inner mitochondrial membrane-embedded domain (FO domain),
which are interconnected by a central and a peripheral stalk. Mammalian ATP synthases contain 15 different subunits: α, β, γ, δ, ε, a, b, c, d, e, f,
g, A6L, F6 and O (also known as OSCP). The F1 domain consists of three α/β dimers and interacts with both the central stalk (a γ, δ and ε
heterotrimer) and the peripheral stalk (which is composed by b, d, F6 and OSCP). The FO domain involves a ring-shaped oligomer of c subunits
stabilized by cardiolipin as well as the a, e, f, g and A6L subunits. Although the a subunit provides a physical dock for the b subunit, A6L
appears to bridge FO to other components of the peripheral stalk. Notably, the ATP synthase form dimers and higher-order oligomer in cellula,
a process that requires the a, e, g and A6L subunits. The formation of F1FO-ATPase dimers is significantly stimulated by ATPIF1, perhaps as this
small protein also forms dimers that bridge adjacent F1 domains. In yeast, ATP synthase monomers engaged in dimeric structures adopt a
V-shaped conformation that forms an angle of 86°. IMS, mitochondrial intermembrane space; Pi, inorganic phosphate.
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robustly activate the hydrolytic activity of the F1FO-
ATPase.179,184,185 Second, similar to ANT,186 the ATP synthase is
sensitive to the oxidation of specific cysteine residues (that is,
Cys294 and Cys103 in the α and γ subunit, respectively), resulting
in the formation of an inter-subunit, inhibitory disulfide bridge.187

Moreover, the catalytic activity of the F1FO-ATPase is influenced by
Δψm and pH,162 which also affect the sensitivity of the PTPC to
MPT inducers.188–190

Similar to the PTPC, the ATP synthase engages in physical and
functional interactions with a large panel of mitochondrial
proteins.191 In particular, the F1FO-ATPase has been shown to
form supercomplexes with ANT family members and PiC (both of
which have been involved in MPT and both of which contain
oxidative stress-sensitive thiol residues),192,193 the so-called ATP
synthasomes.191,194–196 According to current models, the topolo-
gical arrangement of ATP synthasomes would maximize the
efficiency of ATP production and export.191,194–196 Moreover, the
F1FO-ATPase reportedly binds CYPD via the peripheral stalk, in
particular, OSCP and subunit d.197 This CsA-sensitive interaction
reduces both the synthetic and hydrolytic activity of the ATP
synthase.197 However, the F1FO-ATPase-modulatory functions of
CYPD only influence the intramitochondrial pool of adenine
nucleotides, leaving its cytoplasmic counterpart unaffected.198

Finally, several members of the Bcl-2 protein family appear to
interact, physically or functionally, with the ATP synthase.199–201 In
particular, BCL-XL, which is known to inhibit MPT upon binding to
VDAC1,111,112 reportedly binds the F1FO-ATPase, hence enhancing
its synthetic activity.199,200 Along similar lines, an amino-terminally
truncated version of MCL-1 that localizes to the mitochondrial
matrix (as opposed to the full-length MCL-1, which inserts into the
outer mitochondrial membrane) not only promotes the activity of
the mitochondrial respiratory chain, hence increasing the Δψm

and stimulating ATP production, but also favors the oligomeric
state of ATP synthase and thus preserves mitochondrial
ultrastructure.201 This said, whether MCL-1 physically interacts
with one or more F1FO-ATPase subunits or whether its effects on
the oligomerization of ATP synthase are indirect, has not yet been
clarified.
Pharmacological data also suggest a link between the F1FO-

ATPase and MPT. For instance, oligomycin, which inhibits the
catalytic activity of the ATP synthase upon binding to the FO
subunit,202 has been shown to block MPT as induced by
erucylphosphohomocholine (an antineoplastic agent also known
as erufosine), as well as by BAX- and tumor necrosis factor
receptor 1-activating conditions.119,203–205 Of note, similar MPT-
inhibitory effects could not be ascribed to piceatannol, which
inhibits the F1 domain of ATP synthase.205 Taken together, these
findings suggest that the ATP synthase (in particular, the FO
domain) may have a central role in MPT.
In 2013, the suspicion about the central implication of the F1FO-

ATPase in MPT crystallized as Paolo Bernardi’s group proposed
that the pore-forming unit of the PTPC would consist of
ATP synthase dimers.206,207 However, the demonstration that ρ°
cells, which lack mitochondrial DNA, retain a functional
PTPC argues against this model.208 Indeed, in line with the fact
that the dimerization of the F1FO-ATPase requires the a and
A6L subunits (which are encoded by the mitochondrial genome),
ρ° cells contains (highly unstable) ATP synthase dimers at
extremely low levels.146 Moreover, the dimerization of ATP
synthase, which is promoted by ATPIF1,161 has been associated
with MPT-inhibitory and cytoprotective effects in several experi-
mental paradigms.159 Conversely, the relative proportion of F1FO-
ATPase dimers over monomers decreases in aged cells, correlating
with increasing rates of cell death.158 Of note, such a transition
between the dimeric and monomeric form of the ATP synthase
appears to be stimulated by CYPD,158 reinforcing the notion that
F1FO-ATPase oligomers mediate cytoprotective, rather than
cytotoxic, effects.

Among the components of the FO domain, the highly conserved
a, b and c subunits are sufficient to allow for the translocation of
protons across lipid bilayers.209 The c subunit binds Ca2+ and has
actually been ascribed with pore-forming properties.210,211 More-
over, a peptide displaying a high degree of similarity to the c
subunit has been proposed to operate as a PTPC regulator.212,213

Driven by these observations and by the fact that the a subunit
appears to be dispensable for MPT,208 we recently set out to
determine the contribution of the c subunit to the PTPC.214 We
found that the transient depletion of the c subunit (by means of
ATP5G-targeting small-interfering RNAs) prevents the induction of
MPT by Ca2+ and oxidants, while its overexpression markedly pro-
motes MPT (and hence results in some extent of cell death
per se).214 Of note, the MPT-regulatory effects of depleting the c
subunit were not influenced by the metabolic profile (glycolytic or
respiratory) of the cells, nor were they mimicked by the transient
depletion of the α subunit (ATP5A1). Moreover, the temporary
depletion of the c subunit did not affect mitochondrial ATP
levels,214 indicating that the effects on MPT that we observed did
not reflect changes in the availability of adenine nucleotides.
Subsequent work by another group demonstrated that the
addition of purified c subunits to isolated mitochondria provokes
MPT depending on its own phosphorylation state.215 However, the
possibility that c-rings may exist in physiological conditions
independently of other components of the ATP synthase has
not yet been addressed.

CONCLUSIONS AND PERSPECTIVES
In spite of an intense wave of investigation, the precise molecular
composition of the PTPC remains to be unveiled. As MPT is
triggered by conditions that promote protein unfolding, it has also
been proposed that the PTPC would just assemble by the
unspecific interaction of denatured proteins, (virtually) irrespective
of their identity.1,3,216 The evidence in support of this theory,
however, is rather circumstantial. The study of the PTPC is actually
problematic, for at least two reasons. First, several (presumed) core
PTPC components exist in multiple isoforms, which significantly
complicates the generation of adequate knockout models.53,54

Second, many proteins that have been involved in MPT exert key
vital functions, a situation that is incompatible not only with the
generation of murine knockout models, but also with strategies of
stable cellular depletion.217,218 This latter issue could be circum-
vented by knock-in strategies aimed at replacing the wild-type
protein with a mutant that is selectively impaired in its capacity to
modulate cell death, an approach that was successful for the
central MOMP regulator cytochrome c.219

Here, we propose that the ATP synthase has a central role in
MPT, based on the following observations: (1) the F1FO-ATPase
and the PTPC share several pharmacological and endogenous
modulators; (2) the F1FO-ATPase interacts with several MPT
regulators, including ANT, PiC and CYPD; (3) the genetic
modulation of the levels of the c subunit (the sole ATP synthase
component with confirmed conductive capacity) influences the
propensity of mitochondria to undergo MPT, in vitro and in cellula.
As it stands, it seems premature to identify the c subunit of the
F1FO-ATPase as the mysterious pore-forming component of PTPC.
Perhaps, the ATP synthasome simply operates as a regulatory
dock for another, hitherto uncharacterized protein that disrupts
the physical integrity of the inner mitochondrial membrane.
Further studies based on robust genetic models will have to
formally address these possibilities.

ABBREVIATIONS
ANT, adenine nucleotide translocase; ATPIF1, ATPase inhibitory
factor 1; CKMT1, creatine kinase, mitochondrial 1; CsA, cyclospor-
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potential; GSK3β, glycogen synthase kinase 3β; HK, hexokinase;
MOMP, mitochondrial outer membrane permeabilization; MPT,
mitochondrial permeability transition; OSCP, oligomycin
sensitivity-conferring protein; PKCε, protein kinase Cε; pmf,
proton-motive force; PTPC, permeability transition pore complex;
TSPO, translocator protein (18 kDa); VDAC, voltage-dependent
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