
function of RUB/NEDD8 modification in
both plant and animal systems.

In yeast, the most abundant Rub1p-
modified protein is Cdc53p (14). Genetic
evidence suggests that Rub1p modification
regulates the activity of SCF Cdc4, the E3
responsible for conjugation of UBQ to the
CDK inhibitor Sic1p at the G1-to-S phase
transition. It is possible that RUB1 has a
similar function in plant cells. For example,
the Arabidopsis F-box protein TIR1 may be
part of an SCF complex that is required for
the degradation of negative regulators of
auxin response. RUB1 may modify the ac-
tivity of this SCF, perhaps in response to
auxin (23). A homolog of CDC53 exists in
Arabidopsis, and it will be interesting to see
if CDC53 is a target of RUB1 conjugation
in plants.
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Close Contacts with the Endoplasmic Reticulum
as Determinants of Mitochondrial Ca21

Responses
Rosario Rizzuto,* Paolo Pinton, Walter Carrington,

Frederic S. Fay,† Kevin E. Fogarty, Lawrence M. Lifshitz,
Richard A. Tuft, Tullio Pozzan

The spatial relation between mitochondria and endoplasmic reticulum (ER) in living HeLa
cells was analyzed at high resolution in three dimensions with two differently colored,
specifically targeted green fluorescent proteins. Numerous close contacts were ob-
served between these organelles, and mitochondria in situ formed a largely intercon-
nected, dynamic network. A Ca21-sensitive photoprotein targeted to the outer face of
the inner mitochondrial membrane showed that, upon opening of the inositol 1,4,5-
triphosphate (IP3)–gated channels of the ER, the mitochondrial surface was exposed to
a higher concentration of Ca21 than was the bulk cytosol. These results emphasize the
importance of cell architecture and the distribution of organelles in regulation of Ca21

signaling.

Upon physiological stimulation with IP3-
generating agonists, mitochondria undergo
an increase in the concentration of Ca21 in
the matrix ([Ca21]m) (1), well in the range
of the Ca21 sensitivity of the matrix dehy-
drogenases (2). This process, besides play-
ing a direct role in the control of organelle
function, may contribute to the modula-
tion of the cytosolic Ca21 concentration
([Ca21]c), by buffering [Ca21]c (3) or influ-
encing its spatiotemporal pattern (4). The
accumulation of Ca21 by mitochondria is
rapid, despite the low affinity of their trans-
port mechanisms (5). Because mitochon-
dria might respond to microdomains of high

[Ca21] that were generated in their proxim-
ity by the opening of the IP3-gated channels
(1), we conducted high-resolution imaging
of mitochondria and of their relation with
the intracellular Ca21 store (the ER). We
directly monitored the [Ca21] sensed by the
mitochondrial Ca21 uptake systems by us-
ing a targeted aequorin chimera.

The combined use of green fluorescent
protein (GFP) chimeras with distinct spec-
tral and targeting properties allows identifi-
cation of two different subcellular structures
in living cells (6). We expressed the S65T
GFP mutant targeted to mitochondria
[mtGFP(S65T)] (6) in HeLa cells (7) and
used a high-speed imaging system that al-
lows a three-dimensional (3D) fluorescence
image of high resolution to be obtained
from computationally deblurred optical sec-
tions (8). The 3D images, derived from
image stacks taken at 30-s intervals with a
603 objective (pixel size 133 nm), revealed
that mitochondria form a largely intercon-
nected “tubular” network that undergoes
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continuous rearrangement (Fig. 1A). With-
in 1 min of observation, both growth and
retraction, as well as fusion to other por-
tions of the network, were frequently ob-
served (see arrow), indicating a high struc-
tural plasticity. In agreement with previous
observations (9), the “mitochondrial net-
work” was even more obvious when a por-
tion of a mtGFP(S65T)-transfected cell was
analyzed at higher resolution (Fig. 1B). The
visual appearance of a connected network
and the luminal continuity were confirmed
by the rapid recovery of fluorescence after
photobleaching of mtGFP in a portion of
the network (Fig. 1C). Finally, to simulta-
neously visualize the mitochondria and the
ER, we cotransfected in HeLa cells a
mitochondrially targeted blue mutant of
GFP, mtGFP(Y66H, Y145F) (6), and a chi-
mera of GFP(S65T) targeted to the ER
[erGFP(S65T)] (10) (Fig. 1D). Domains of
close apposition were evident in Fig. 1D
and in similar images. From these data, the
surface of the mitochondrial network in
close apposition to the ER was estimated to
be ;5 to 20% of total (11).

On the basis of the morphological data,
we expected that the microdomains of high
[Ca21] generated by the opening of the
IP3-gated channels might be sensed by only
a small portion of the mitochondrial sur-
face. To verify this possibility, we construct-
ed an aequorin chimera targeted to
the mitochondrial intermembrane space
(MIMS) (12). This chimera (designated
mimsAEQ), when transiently expressed in
HeLa cells, appeared properly sorted, as
shown by the pattern of the immunocyto-
chemical stain (13) (Fig. 2A) and by results
of dual-labeling experiments with the mito-
chondrial marker cytochrome c oxidase
(14). The MIMS location of aequorin was
confirmed by the characteristics of agonist-
dependent [Ca21] changes (15). Indeed,
the peak [Ca21] increase elicited by hista-
mine, an IP3-generating agonist (Fig. 2B),
was much smaller than that measured in the
mitochondrial matrix with mtAEQ (Fig.
2C) and was unaffected by treatment with
the uncoupler carbonylcyanide p-(trifluoro-
methoxy) phenylhydrazone (FCCP), which
collapses the driving force for Ca21 uptake
in the matrix (16).

The histamine-dependent [Ca21]mims
changes differed also from those of
[Ca21]c. In particular, the initial maximal
[Ca21]mims increase, which is mostly con-
tributed by the release of Ca21 from intra-
cellular stores, exceeded that of [Ca21]c
(3.5 6 0.2 compared with 2.5 6 0.3 mM,
n 5 10), and then declined to similar con-
centrations (Fig. 2D). Because the outer
mitochondrial membrane is freely perme-
able to ions, a possible explanation of this
finding is that a small fraction of the pho-

toprotein is transiently exposed to a local
domain of saturating [Ca21] and is com-
pletely discharged. Thus, although the in-
crease in [Ca21] in most of the MIMS is in
fact similar to that of the cytosol,
the maximal light emission of this aequorin
fraction contributes to the total lumi-
nescence signal; hence, the calibrated
[Ca21]mims increase appears to be larger
than that of [Ca21]c. If this were the case,
then, because of the irreversible photopro-
tein consumption in these domains, the
difference in the apparent [Ca21] of the two
compartments would decrease during a sub-
sequent agonist stimulation applied shortly
after the first. Indeed, when the cells were
exposed to another IP3-generating agonist,
adenosine triphosphate (ATP), after the
stimulation with histamine, the difference
in the peak [Ca21] increase of the cyto-

plasm and of the MIMS was nearly abol-
ished (17). The discrepancy between the
increases in [Ca21]mims and [Ca21]c (Fig.
2D) is not a calibration artifact due either
to an intrinsic difference in the Ca21 affin-
ity of the two chimeras or to local pH or
pMg gradients. Indeed, using a membrane-
bound cytosolic probe (mGluR1/AEQ)
(18), we observed, in digitonin-permeabi-
lized cells, that release of Ca21 from the ER
induced by the administration of IP3 caused
a greater increase in [Ca21] in the MIMS
than in the bulk cytosol, whereas perfusion
of a buffered Ca21 solution increased the
[Ca21] of the two compartments to the
same extent (Fig. 2E).

At contacts between the ER and mito-
chondria, microdomains of high [Ca21] may
be generated upon opening of the IP3-gated
channels. These microdomains could allow

B

D

1µm 1 µm

1 µm1 µm

4µm

C

2 µm

A

Fig. 1. High-resolution 3D imaging of mito-
chondria and ER. (A) Time-lapse 3D imaging
of mitochondrial structure in a HeLa cell tran-
siently expressing mtGFP (each image was
taken 30 s apart). Transfection, image acqui-
sition (with a 603 objective), and processing
were done as described (7, 8). (B) A 3D im-
age of mitochondria, taken with a 1003 ob-
jective; all other experimental conditions as
in (A). (C) Recovery of mtGFP fluorescence after photobleaching; experimental conditions as in (A). The
first and second image were taken immediately before and after photobleaching mtGFP fluorescence in
a small area within the cell. The following three images were taken at 2-min intervals after and the final
image 30 min after the photobleaching. (D) Combined 3D imaging of mitochondria and ER in a HeLa cell
transiently expressing mtGFP(Y66H,Y145F) and erGFP(S65T). The two 3D images were processed as
in (A) and superimposed. The mitochondrial and ER images are represented in red and green, respec-
tively; the overlaps of the two images are white. On the bottom, a detail of the main image (80-nm pixel).
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the rapid uptake of a large amount of Ca21

by mitochondria. The rapid diffusion of
Ca21 within the mitochondrial network (as
revealed by the discharge of a major portion
of mitochondrial matrix aequorin, mtAEQ)
could allow the rapid tuning of mitochondri-
al metabolism to cell needs. On the cytosolic
side, diffusion of Ca21 would dissipate the
microdomains, thus extending the Ca21 sig-
nal to the bulk cytosol (and eliciting the cell
response). The lower [Ca21] would limit fur-
ther accumulation into mitochondria, avoid-
ing organelle overload, Ca21 cycling, and
collapse of the proton gradient.

On the basis of this model, we would
predict that if a second release of Ca21 from
the ER is induced after the first, then be-
cause of the depletion of active aequorin in
the mitochondrial regions closer to the ER,
the apparent [Ca21]m increase should be
underestimated. However, if enough time
elapses between two consecutive stimula-
tions, unconsumed mtAEQ should diffuse
intralumenally from other regions of the

mitochondrial network, leading to a larger
increase in light emission, and thus the
calibrated [Ca21]m increase should recover
its initial amplitude. We treated cytosolic
aequorin (cytAEQ)– or mtAEQ-transfected
cells with ATP first, and then 1.5 or 10 min
later, with histamine (Fig. 3). In the former
case, the histamine-dependent [Ca21]m in-
crease was smaller than the increase caused
by ATP and drastically less than that ob-
served in cells in which the ATP stimula-
tion was omitted (43 6 3%). The ampli-
tudes of the [Ca21]m increases did not cor-
relate with those of [Ca21]c (for example, in
the second stimulation with histamine, the
[Ca21]c increases were larger than those
caused by ATP), but rather suggested that,
during stimulation with a first agonist,
mtAEQ was preferentially consumed at the
“hotspots.” In fact, if the second histamine
treatment was given after a 10-min delay,
the increase in [Ca21]m was larger, ap-
proaching the values measured when his-
tamine was applied as first stimulus

(84 6 8%).
The observation that mitochondria form

in vivo a largely connected, continuous net-
work has consequences for understanding
physiological events, such as organelle bio-
genesis and mitochondrial energy conserva-
tion, and for clarifying pathophysiological
events, such as the mechanisms that lead to
defects in mtDNA. Close appositions be-
tween ER and mitochondria may represent
the site where microdomains of high [Ca21]
are generated upon IP3-mediated Ca21 re-
lease. Indeed, there is a good agreement
between the area of the apposition sites
and the area in which the increase in
[Ca21] saturated the binding of Ca21 to
aequorin (19). The microheterogeneity of
the Ca21 signal, and the spatial relation
between ER and mitochondria, may thus
be determinants of mitochondrial Ca21

uptake, which influences organelle func-
tion (1) and may modulate the cytosolic
Ca21 signal (2, 3).
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high [Ca21] generated in the MIMS upon IP3-depen-
dent Ca21 release from the ER. If the rate of dis-
charge of cytAEQ closely matches that of the “bulk”
MIMS, the difference between light emission of
mimsAEQ and cAEQ (3 to 5%) can be attributed to
the discharge of mimsAEQ in the domains at high
[Ca21]. Assuming that the distribution of mimsAEQ
was homogeneous and the [Ca21] in these microdo-
mains was high enough to cause complete dis-
charge of all their aequorin content, the regions
should correspond to ;3 to 5% of the MIMS.
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