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Abstract: Better understanding of the effect of ageing on mitochondrial metabolism and of the mechanisms of action of 

various drugs is required to allow optimization of the treatment of many diseases with minimized risk of dangerous 

impairment of mitochondrial function. Numerous reports show that efficacy of medical treatment depends on the age of 

treated subjects. This applies particularly to the effect of drugs on various senescence-prone cellular pathways. In this 

review, we demonstrate how ageing affects various mitochondria-associated pathways and their response to a variety of 

factors. These factors include registered drugs and other chemicals, and account for diverse consequences which vary 

depending on the physiological condition. Pharmacological treatments aimed at improving mitochondrial function should 

thus have in mind the subject age. 
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1) MITOCHONDRIAL RESPIRATORY CHAIN 

STRUCTURE, FUNCTION AND IMPERFECTIONS  

Mitochondrial Respiratory Chain Structure and 

Function 

 Mitochondria are dynamic, plastic organelles linked to 
the “cell´s biochemical powerhouse”, as they produce the 
majority of cellular ATP through oxidative phosphorylation 
(OXPHOS) and carry out several other crucial metabolic 
processes [1] (Fig. 1). The tricarboxylic acid cycle, �-oxida-
tion of fatty acids, segments of the urea cycle, and pyruvate 
oxidation by pyruvate dehydrogenase (PDH) all occur in the 
mitochondrial matrix. Proteins of the respiratory chain, ATP 
synthase and enzymes involved in heme biosynthesis are 
associated with the inner mitochondrial membrane (IMM). 
The composition and structure of the IMM are critical for the 
diverse reactions of the OXPHOS [2, 3]. Both mitochondrial 
membranes are very rich in proteins. Porins in the outer 
mitochondrial membrane (OMM) allow small molecules 
(<10 KDa) to be freely exchanged between the cytoplasm 
and the intermembrane space (IMS). By contrast, the IMM is 
completely impermeable even to small molecules (with the 
exception of O2, CO2, and H2O). Numerous transporters in 
the IMM ensure the import and export of important metabo-
lites. The IMM also contains proteins responsible for the 
import of newly synthesized proteins, including components 
of the respiratory chain complexes and ATP synthase, and 
others [4].  
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 The OXPHOS is by far the major source of ATP in 
mammalian cells relying on aerobic energy metabolism. The 
electron transport chain (ETC) consists of: a) three major 
protein assemblies: mitochondrial respiratory complex I 
(NADH:ubiquinone oxidoreductase), complex III (ubiqui-
nol:ferricytochrome c oxidoreductase) and complex IV 
(cytochrome c oxidase), which build up transmembrane 
electrochemical potential (��) by coupling their electron 
transfer activities to H

+
-translocation from the matrix 

(negative) to the outer (positive) side of the inner mitochon-
drial membrane, and b) two mobile carrier molecules, ubi-
quinone (Coenzyme Q) and cytochrome c. The electroche-
mical gradient is then utilized for ATP synthesis by complex 
V (ATP synthase) (Fig. 1A). Succinate-Q oxidoreductase, 
which is part of the tricarboxylic acid cycle, is also assigned 
to the respiratory chain as complex II. All the respiratory 
chain complexes are made up of numerous polypeptides and 
contain a series of different protein-bound redox coenzymes 
[5], including flavins (FMN or FAD in complexes I and II), 
iron–sulfur clusters (in I, II, and III), and hemes (in II, III, 
and IV) [6, 7]. Of the more than 80 polypeptides in the 
respiratory chain, only 13 are encoded by the mitochondrial 
genome. The others are encoded by nuclear genes and have 
to be imported into the mitochondria after being synthesized 
in the cytoplasm.  

 As described above, the respiratory chain is responsible 
for the OXPHOS process. Although its component proteins 
are not organized in a chain-like mode, electrons are trans-
ported from reducing equivalents (NADH+H

+
 and succinate) 

to molecular oxygen in a chain fashion, driven by the large 
difference between the redox potentials of the donor and the 
acceptor [8]. The reaction is strongly exergonic and most of 
the energy released is used to establish the proton gradient 
across the IMM [9, 10]. ATP synthesis is ultimately coupled 
to the return of the protons from the IMS into the matrix 
[11]. The large number of coenzymes involved in the elec-
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tron transport may initially appear surprising. However, the 
change in free enthalpy �G, i.e., the chemical work that is 
done, depends only on the difference between the redox 
potentials of the donor and the acceptor [8] (Fig. 1C). 
According to the chemiosmotic theory, the proton gradient 
that is formed between the matrix and the intermembrane 
space has two components, one being the transmembrane 
electric potential (��) and the other one being the pH 
gradient (�pH). Mitochondria are unique cellular organelles 
which can build up a �� of up to -180 mV [12, 13]. This 
large value is probably divided into smaller, more mana-
geable “packages” whose size is determined by the diffe-

rence between the redox potentials of the respective inter-
mediates. It is assumed that this division is responsible for 
the astonishingly high energy yield achieved by the respira-
tory chain. These redox potentials determine the path 
followed by the electrons, as members of a redox series have 
to be arranged in order of increasing redox potential if the 
transport is to occur spontaneously [6, 14] (Fig. 1C). 

Mitochondrial Respiratory Chain Control 

 The cellular energy demand ranges widely, depending on 
the function and activity of the cell. Thus, adjustment of 

 

Fig. (1). A schematic drawing of models of the mitochondrial respiratory chain structure and function. (A) The mitochondrial 

respiratory chain. The transmembrane protein complexes of the electron transport chain generate an electrochemical gradient over the IMM. 

NADH+H
+
 is oxidized to NAD

+
. The electrons are transferred from NADH via complex I and ubiquinone (Q) to complex III. Afterwards 

they pass through the peripheral electron carrier cytochrome c and complex IV to the terminal acceptor, molecular oxygen, which is reduced 

to water. The electrochemical proton gradient is used by complex V (F1FoATP synthase) to produce ATP and/or by natural uncouplers 

(Thermogenin, UCP-1); (B) The “solid state” organization of the OXPHOS system and hypothetical electron transfer within supercomplex I-

III-IV; (C) Redox systems involved in mitochondrial electron transport and their approximate redox potentials. These potentials determine 

the path followed by the electrons if transport is to occur spontaneously. > Black arrows represent electron flow. 
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energy production to the physiological demand is essential to 
all organisms. The first mechanism shown with isolated 
mitochondria to control OXPHOS is called respiratory 
control [15].  

 Mitochondrial energy production can alternate between 
two steady-states. Respiration is slower during a so-called 
state 4 respiration as no ATP production occurs, leading to 
the maintenance of high �� value. In turn, state 3 respiration 
is faster as ATP is generated by the ATP synthase with 
concomitant use of the ��. Under physiological conditions, 
mitochondrial ATP production seems to occur in an 
intermediate state between states 3 and 4, depending on the 
metabolic status of the cell [16-18]. The synthesized ATP is 
then exported by the adenine nucleotide translocase (ANT) 
to the cytosol in exchange for ADP. Electrical currents asso-
ciated with the electrogenic ATP/ADP transport can be 
measured directly [19, 20] using a technique [21] in which 
the capacity currents across a planar membrane between two 
bath electrodes are measured. To estimate the number of 
ATP molecules formed in the aerobic state one needs to 
know the P/O quotient, i.e., the molar ratio between the 
synthesized ATP and the oxygen consumed in the process 
[18]. During transport of two electrons from NADH+H

+
 to 

oxygen about ten protons are pumped into the IMS, while for 
transport from ubiquinol (QH2) the number is only six. ATP 
synthase probably requires three protons to synthesize one 
molecule of ATP, so the maximum P/O quotients possible 
are around 3 or 2. However, the actual value is much lower 
since the transport of specific metabolites into the mito-
chondrial matrix and exchange of ATP for ADP also 
consume the proton gradient. The P/O quotients generally 
accepted for the oxidation of NADH+H

+
 and QH2 are 

therefore closer to 2.5 and 1.5, respectively [22], although 
several well documented studies show other values [23-26]. 
The electrical nature of the ADP/ATP exchange was not 
immediately accepted, partially, because it would affect the 
standard textbook P/O ratios. Mitchell and Moyle believed to 
have shown [27] that the exchange is neutral, corresponding 
to ADP/ATP antiport with a parallel H

+
 release, or that it is 

neutralized by Ca
2+

 co-transport [28]. Vignais et al. assumed 
[29] that the energy transduction to the ATP synthesis also 
drives the ATP export, implying a localized release of newly 
synthesized ATP.  

 The amount of nutrient catabolism and ATP synthesis 
have to be continually adjusted to the changing energy 
requirements of the cell. This conceptually simple regulatory 
mechanism which ensures that ATP synthesis is “automa-
tically” coordinated with ATP consumption is known as 
respiratory control, where the different elements of the 
OXPHOS are coupled via shared coenzymes and other 
factors [11]. If a cell is not using any ATP, hardly any ADP 
will be available to be converted back to ATP in the 
mitochondria, hence ATP synthase is unable to use the 
proton gradient across the IMM. This in turn inhibits 
electron transport in the respiratory chain, which means that 
the reducing equivalent NADH+H

+
 can no longer be 

reoxidized to NAD
+ 

[30]. Consequently, the resulting high 
NADH/NAD

+
 ratio inhibits the tricarboxylic acid cycle, and 

thus slows down the catabolic conversion of the substrate 
[11, 31]. Conversely, high rates of ATP utilization stimulate 
nutrient degradation and the respiratory chain via the same 
mechanism. If the formation of the proton gradient is 

prevented by means of short-circuiting the process (e.g. with 
a protonophore), substrate oxidation and electron transport 
proceed much more rapidly, however, instead of ATP only 
heat is produced (Fig. 1A). A new type of control of 
mitochondrial �� and formation of reactive oxygen species 
(ROS) has been proposed by Lee et al. based on allosteric 
inhibition of cytochrome c oxidase by ATP at high intra-
mitochondrial ATP/ADP ratios [30]. An interesting study 
[32] described recently in more detail the mitochondrial 
OXPHOS and concluded that the most important factor in 
determining the rates of ATP synthesis is not the level of 
ADP or the proton gradient, but rather the concentration of 
O2 and the state of reduction and/or protonation of the inner 
mitochondrial membrane. 

Organization of Mitochondrial Respiratory Chain 
Complexes 

 The original model for organization of the respiratory 
chain complexes assumed that they diffuse freely and 
independently of one another in the IMM [33]. However, 
recent data suggest that the complexes form higher-order 
structures called supercomplexes or "respirasomes" [34, 35] 
(Fig. 1B). In this model, the complexes exist as organized 
sets of interacting enzymes [36] and these associations allow 
channeling of substrates between the various enzyme comp-
lexes, thereby increasing the rate and efficiency of electron 
transfer and proton translocation and minimizing the 
formation of free radicals by limiting the direct transfer of 
electrons to oxygen [37, 38]. Within such supercomplexes 
some components would be present in higher amounts than 
others, with some data suggesting a ratio between complexes 
I/II/III/IV and the ATP synthase of approximately 1:1:3:7:4 
in mammalian mitochondria [39]. An inspiring study sug-
gests that dimerization of ATP synthases and supercomp-
lexes formation is essential for cristae morphology [40]. 
However, the debate over this supercomplex hypothesis is 
ongoing, as some data do not appear to support it [41]. 
Besides functional reasons, supercomplex formation seems 
to be necessary for the assembly and stability of its 
individual components.  

Mitochondrial Respiratory Chain and its Natural 
Imperfectness 

 The coupling mechanism between the electron transfer 
and proton pumping activities of the mitochondrial respira-
tory complexes has been the aim of intense research for 
many years. A particularly controversial aspect concerns the 
possible physiological variability of the energy conservation 
efficiency of the redox-driven proton pumps. Several models 
have been proposed to explain the peculiar properties of this 
process which remains still unsolved [11, 14, 42]. Here we 
review some of the intrinsic imperfections of mitochondrial 
energetics, mainly the metabolic consequences of OXPHOS 
impairment including accumulation of metabolic intermedia-
tes, increased generation of ROS, and decreased ATP 
production. The yield of mitochondrial ATP production by 
OXPHOS can be influenced by several factors among which 
uncoupling (leak) and decoupling (slip) play a major role in 
the modulation of the protonmotive force [43-46]. Several 
physiological functions have been proposed to justify the 
energetic expenses of maintaining the mitochondrial proton 
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leak. These include, but are not restricted to the regulation of 
OXPHOS efficiency, heat production by dissipation of the 
proton gradient (thermogenesis), and production of mito-
chondrial ROS. Uncouplers (such as protonophores) break 
down the proton gradient by allowing H

+
 ions to pass from 

the intermembrane space back into the mitochondrial matrix 
without an involvement of ATP synthase. Thermogenin 
(uncoupling protein-1, UCP-1), an ion channel in mito-
chondria of brown fat tissue is a naturally occurring 
uncoupler [47] (Fig. 1A). Whereas UCP-1 in brown adipose 
tissue has a well-defined role in thermogenesis, the roles of 
other UCPs (UCP2-UCP5) are still tentative, such as in the 
control of immune response, oxygen radical formation, and 
insulin secretion [48-52]. Therefore, uncoupling manifests 
itself as a non site-specific decay of the mitochondrial 
energy conservation efficiency. Decoupling of specific 
redox-driven proton pumps derives from “slippage” events 
that could be caused by the activation of intramolecular 
electron transfer routes not associated with proton 
translocation, or by mechanistic/kinetic alterations of the 
coupling pathways/ reactions [24, 31]. Mitochondrial proton 
leak may also represent a mechanism for the regulation of 
mitochondrial production of ROS, mediators of oxidative 
cell damage [53]. In addition to UCPs, adenine nucleotide 
translocase (ANT) is a second candidate that may modulate 
mitochondrial energy efficiency. ANT is known to mediate 
uncoupling by fatty acids and to lower mitochondrial Δψ in 
the heart and skeletal muscle, and it can also induce proton 
leak in the presence of activators such as adenosine 
monophosphate [54]. Like UCP and ANT, activation of the 
mitochondrial ATP-sensitive K

+
 channel (mitoKATP) plays 

a central role during pathological conditions associated with 
oxidative stress. During ischemic preconditioning, moderate 
increments in ROS release activate mitoKATP, which then 
leads to mild uncoupling and prevents consequences of 
mitochondrial oxidative stress during reperfusion such as 
calcium overload, resulting in tissue protection [55].  

 Mitochondrial ROS are important determinants of cell 
functioning, participating in many signaling networks and 
also in a variety of degenerative processes. A small but 
constant leak of electrons from the mitochondrial respiratory 
chain induces monoelectronic reduction of molecular 
oxygen, forming superoxide anion (O2

�-
). Nearly 2-4% of the 

total oxygen consumed by mitochondria is not fully reduced 
to water and results in the formation of ROS, which together 
with their reaction products, such as the hydroxyl radical, are 
very harmful to cells as they oxidize proteins and fatty acids 
and damage DNA. Oxidative modifications of mitochondrial 
electron transport chain proteins compromise normal 
activity, bringing about a further increase in ROS production 
and oxidative damage contributing to the mitochondrial 
dysfunction [56]. The ROS-mediated cellular damage might 
contribute to disease and is proposed as a cause of ageing 
[57]. Besides being traditional targets for ROS effects, 
mitochondria are also recognized producers of the same 
species that can destroy them. Currently seven separate sites 
of ROS production in mammalian mitochondria have been 
identified. Two of them are well-documented sources of 
mitochondrial ROS: complexes I and III [58-61]. Despite the 
absence of ROS formation by Complex II itself, succinate is 
an important source of ROS in many tissues. This is due to 
reverse electron transfer from succinate to ubiquinone (via 

Complex II) and back to Complex I [62, 63]. Other 
documented ROS sources among mitochondrial enzymes are 
the flavoproteins acyl-CoA dehydrogenase and glycerol 
phosphate dehydrogenase, which can also generate ROS in 
some tissues when oxidizing lipid-derived substrates [58, 64, 
65], monoamine oxidase and dihydroorotate dehydrogenase 
[66, 67]. Pyruvate and �-ketoglutarate dehydrogenase both 
contain flavoenzyme dihydrolipoyl dehydrogenase subunits 
[68], which are very important ROS sources in the brain [69-
70] and may be involved in ageing, at least in model 
organisms. Furthermore, not all mitochondria are alike and 
can present quite diverse ROS release patterns in various 
tissues and organisms [71-73]. 

 The traditional view of ROS is that they have a negative 
effect on cell functioning and viability, and therefore 
antioxidants that inhibit their reactivity must be beneficial. 
An increasing recognition of the roles of ROS in cell 
signaling and modulation of gene expression has forced a re-
evaluation of this simplistic view. Although ROS production 
by mitochondria is a continuous process in physiological 
conditions, mitochondria also have an efficient antioxidant 
defense network [74]. Mitochondrial superoxide dismutase 
(SOD2), glutathione peroxidase (GPx), glutathione redutase 
(GR), �-tocopherol and cytochrome c are examples of the 
mitochondrial antioxidant defences [74]. It is apparent that 
our understanding of the roles of ROS and antioxidants must 
be based on improved knowledge of their actions in indi-
vidual physiological and pathophysiological conditions.  

2) MITOCHONDRIAL DYSFUNCTION DURING 
AGEING AND MITOCHONDRIAL DISORDERS – 

ROLE OF OXIDATIVE STRESS AS A PRIMARY AND 

SECONDARY CAUSE OF MITOCHONDRIAL 

DYSFUNCTION 

 Ageing can be defined as a genetic and physiological 
process associated with the gradual biological impairment of 
normal organism functions. On the cellular level, ageing 
leads either to the loss of cellular homeostasis, decreased 
proliferation, or even to cell death. Consequently, these 
changes have a direct impact on the functional ability and 
physiological performance of tissues and organs [75]. 
Ageing can be also driven by a decreased capacity to 
maintain energy homeostasis. The reduced ability to produce 
ATP in the cells of aged animals emphasizes the importance 
of the mitochondrial theory of ageing. It is now widely 
accepted that the primary factor determining the age-
dependent dysfunction in the energy state of mitochondria is 
the efficiency of oxidative phosphorylation. Ample experi-
mental data show that in rodents and human subjects the 
activities of the respiratory enzyme complexes decrease with 
age in various tissues and organs such as brain, liver, and 
skeletal muscles [76-84]. 

 In rodents the age-dependent decrease in electron transfer 
activity in brain, kidney, heart and liver refers mainly to 
complexes I and IV of the respiratory chain. The activity of 
complexes II and III remains virtually unaffected [85-94]. 
By the mid 1990s Boffoli et al. [95] demonstrated that the 
decrease in the activity of the individual respiratory chain 
complexes mentioned above can be correlated with the 
reduction of their content in mitochondria. Additionally, a 
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decrease of ubiquinone content in skeletal muscles of old 
mice, reported by Lass et al., contributes to the OXPHOS 
disturbance [96]. In turn, no deterioration in the activity of 
catalytic subunits of complex III ATPase (F1 subunit) and 
ATP synthase has been observed, respectively, in ageing 
humans [95] and mouse liver and brain [89, 92]. This stands 
in contrast with the assumption that one of the important 
parameters describing age-dependent alterations in mito-
chondrial metabolism is the respiratory control ratio 
(proportion of ADP-stimulated - state 3 to resting - state 4 
respiration). Moreover, in contrast to those enzymatic 
studies, mitochondrial ATP synthesis has been observed to 
decrease with age to various levels in different human tissues 
[77, 84] and skin fibroblasts [97]. The data suggest that the 
impairment of ATP synthesis may be a combined result of 
age-induced lesions of the respiratory chain, disturbances in 
mitochondrial membranes and a decreased activity of the 
adenine nucleotide translocase, which is also known to 
decline with age [98]. 

 The list of age-dependent alterations in mitochondrial 
physiology is extensive and includes: 

a) Mitochondrial Morphology 

 A characteristic distinguishing feature of mitochondria in 
cells of aged individuals is their increased volume [99]. 
Moreover, mitochondria in cardiac myocytes derived from 
aged rats have been reported to possess fewer cristae [100, 
101], while those in hepatocytes from old humans retain 
their higher number [102]. However, in both cases the 
organelles were larger in size. Such an enlargement of 
mitochondria with age is not fully understood. Nevertheless, 
oxidative stress and subsequent mitochondrial swelling 
seems to be responsible for this condition [103].  

b) Mitochondrial Mass, mtDNA Content and Expression  

 Studies on human lung fibroblasts showed increased 
mitochondrial mass during replicative senescence [104, 105]. 
This could be a consequence of a decreased mitochondrial 
turnover controlled by autophagy [106], which is responsible 
for disposal of mitochondria. An argument in favor of this 
theory is the increased number of damaged mitochondria in 
aged and senescent cells [107]. The group of Wei and 
colleagues from China observed a significant increase in 
mitochondrial DNA content in lungs of aged human subjects 
[108]. Other studies have shown that reduced activity of the 
respiratory chain complexes in old rodents can be correlated 
with the overexpression of mitochondrial genes encoding 
subunits of complexes I, III, IV and V. On the other hand, 
Northern blot analysis indicates that such a relationship is in 
opposition with the observed decrease in mRNA expression 
[109] and indicates that the presence of a compensatory 
mechanism (increasing the number of mtDNA copies) 
cannot be sufficient for long term protection of the 
respiratory chain from age-related dysfunctions.  

c) Mitochondrial Fusion and Fission 

 It has been reported that in senescent cells fission is 
decreased with simultaneous increased fusion of mitochon-
dria, which results in the formation of enlarged, elongated 
giant mitochondria [110]. This could have impact on the 

degradation of those organelles because smaller particles 
undergo autophagy more easily [111]. It seems that such 
elongated mitochondria enable exchange and distribution of 
correct copies of mtDNA along a fused mitochondrial 
network [102, 112, 113]. 

d) Overproduction of Mitochondrial ROS/Free Radical 
Theory of Ageing  

 The age-dependent handicapping of mitochondrial ener-
getics is associated with the accumulation of defective 
mtDNA and respiratory chain complex copies with enhanced 
electron leakage due to their dysfunction. These symptoms 
are believed to be in direct relation with a diminished ATP 
synthesis and increased ROS generation in organs and 
tissues of old mice [114] as well as skin fibroblasts from 
elderly human subjects [115].  

 Since the free radical theory of ageing was proposed by 
Harman in his landmark original paper in 1956 [116], 
mitochondria have been linked to the prooxidative properties 
of free radicals in the ageing process. Also now it is 
universally accepted that an age-related accumulation of 
mutations in mtDNA leading to a decline in respiratory chain 
functions induces an increase of ROS generation by 
mitochondria. This in turn causes oxidative damage, further 
mtDNA mutations and so the merciless vicious circle forms 
[117, 118]. Apart from damaging DNA, the elevated produc-
tion of ROS is responsible for oxidation of other funda-
mental cellular components such as proteins and phospho-
lipids. Another feature conductive to senescence is an age-
dependent reduction in the degradation efficiency of 
oxidized, nitrated and damaged proteins. Lastly antioxidant 
defences, also decline with age [119, 120]. 

 Independently from the Harman’s hypothesis, another 
theory emerged and is dynamically studied. Based on recent 
findings that autophagy is diminished in lipofuscin-loaded 
cells and that cellular lipofuscin content positively correlates 
with oxidative stress and mitochondrial damage, it has been 
proposed the mitochondrial-lysosomal axis theory of aging, 
according to which mitochondrial turnover progressively 
declines with age, resulting in decreased ATP production 
and increased oxidative damage [121, 122]. Lysosomes, 
which are normally responsible for mitochondrial turnover, 
gradually accumulate an undegradable material, called 
lipofuscin or age pigment [123]. Finally, new findings point 
to a slow accumulation of lipofuscin in the lysosomal 
compartment of long-lived postmitotic cells due to the 
existence of this mitochondrial-lysosomal cross-talk in 
which formation of ROS by mitochondria gives rise to 
peroxidation of autophagocytosed lysosomal contents under 
degradation [122]. 

 Recent studies have shown that PKC can also play a 
critical role also in the regulation of autophagy, the dynamic 
process of protein degradation, typically observed during 
nutrient deprivation, and occurs when cells need to “self-
cannibalize” or degrade their constituents [124]. However, 
the exact mechanism remains ambiguous [125].  

 Zhang and co-workers demonstrated that inhibition of 
PKC reduced significantly autophagy and increased apop-
tosis markedly, whereas pre-treatment with a PKC activator 
caused the opposite results [126]. 



832    Current Drug Targets, 2011, Vol. 12, No. 6 Suski et al. 

 Other recent observations showed that acute hypoxic 
stress induces autophagy through a process involving PKC�. 
Upon stress, a rapid activation of PKC� occurs, with the 
release of Beclin-1 from its inhibitor Bcl-2, leading to 
autophagy induction during the early phase of hypoxia [127]. 

 However, an opposite effect of PKC� on autophagy was 
also described [128]. Indeed, in pancreatic ductal carcinoma 
cells, PKC� expression constitutively suppressed autophagy 
through the induction of tissue transglutaminase expression. 
This apparent contradictory function for PKC� could be 
explained by a “dual role” of PKC� in cell survival and cell 
death: early induction of PKC� may contribute to a transient 
protective response by stimulating autophagy, whereas the 
delayed and sustained activation of PKC� by cleavage could 
lead to an eventual pro-death signal [129], to regulate the cell 
fate decision inhibiting autophagy. Finally, treatment with 
the Endoplasmic Reticulum stressors thapsigargin or 
tunicamycin induced PKC� phosphorylation and activated 
autophagy in a mTOR-independent way [130]. 

 Numerous proteins have been proposed to be responsible 
for lifespan regulation. Recently, one protein in particular, 
p66Shc and its signaling properties has attracted major 
interest in ageing research. Less than 12 years ago, 
Migliaccio and coworkers proposed that the p66Shc protein 
can control mammalian life span by regulating cellular 
response to oxidative stress. Studies on transgenic mice 
lacking p66Shc protein have shown that their life span 
increased by 30-40% in relation to their wild type coun-
terparts without any pathological consequences. The reason 
that p66Shc may be recognized as related to the oxygen 
radical theory of ageing is that the genetically modified 
animals demonstrated improved resistance to oxidative stress 
[131].  

 In agreement with those observations, Mouse Embryo 
Fibroblast cells (MEFs) from which p66Shc had been comp-
letely depleted, were resistant to apoptotic death induced by 
oxidative stress [131] similarly to p53

-/-
 MEFs [132]. 

Deletion of p66Shc causes resistance to oxidative stress but 
p66Shc level can be upregulated only in p53 wild type MEF 
after H2O2 treatment [133], though in cell lines like HeLa or 
SaOs-2 phosphorylation of crucial for p66Shc apoptotic 
pathway activation residue-Ser36, occurs independently of 
p53 presence [134]. In the absence of p53 the stability of 
p66shc protein does not increase as it happens in p53 wt 
cells after UV exposure and apoptosis induced by prooxidant 
agents such as H2O2 connected with p66Shc pathway is 
possible only in p53 wt cells [133], all of these data suggest 
that p66Shc acts downstream and independently of p53 and 
plays regulatory role in apoptotic process. However there is 
still close relation between p53 and p66shc on the anti-
oxidant defense system activation. p53 induce p66Shc gene 
transcription. Both these proteins, indirectly-by inhibiting the 
FOXO transcription factors, down regulate antioxidant 
enzymes (catalase, superoxide dismutase) expression under 
oxidative stress condition [135]. Furthermore some data 
show that p53 gene polymorphism correlates with p66Shc 
protein level in centenarians [136].  

 The p66Shc protein is an alternatively spliced isoform of 
a growth factor adapter which belongs to the ShcA family. 
The p66Shc protein differs from two other ShcA members 
(p46Shc and p52Shc) by the presence of an additional N-

terminal proline-rich domain (CH2). This domain carries an 
important serine phosphorylation site, Ser36. Recently we 
have shown that phosphorylation of this residue plays an 
important role in the cellular response to oxidative stress and 
in ageing. This phosphorylation is an important step in the 
initiation of p66Shc translocation to mitochondria and 
mitochondria-associated membranes during ageing or upon 
oxidative stress and can be mediated by one of the serine-
threonine kinases (especially by protein kinase C� (PKC�)) 
[137, 138]. p66Shc translocated to the mitochondria

 

perturbs 
their structure and functions and, most importantly, 
accelerates ROS production which in turn propels the vicious 
cycle responsible for further excessive ROS formation by 
mitochondria [138].  

 Mitochondrial p66Shc, by virtue of its association with 
cytochrome c, interferes with the electron transport chain, 
inducing accumulation of reducing equivalents upstream of 
complex III, thus favoring superoxide generation by reduced 
ubiquinone. Thus, under conditions of acute oxidative stress, 
p66Shc should inhibit activity of the ETC, in turn reducing 
mitochondrial electrochemical potential and calcium trans-
port, which would be followed by opening of the permea-
bility transition pore (PTP), swelling of the organelle 
followed by cytochrome c release and activation of the 
apoptosome [139]. 

 This molecular pathway extensively studied in our 
laboratories is probably responsible for the ageing properties 
of p66Shc. We have proposed that oxidative stress is asso-
ciated with the activation of p66Shc and thus the recruitment 
of mitochondria in apoptosis. Understanding of this novel 
signalling mechanism, operative in pathophysiological con-
ditions of oxidative stress (also in the case of mitochondrial 
disorders), may open new possibilities for pharmacological 
slowing down of organ deterioration processes during 
ageing. That is why, rather than searching for more effective 
antioxidants we study the possibility of modulating the 
“p66Shc pathway” by hispidin (a specific inhibitor of 
p66Shc Ser36 phosphorylation by PKC�) and the effects of 
this intervention on mitochondrial metabolism and ROS pro-
duction. The effects of hispidin and its possible therapeutic 
usage will be presented below.  

e) Mitochondrial Disorders 

 Mitochondrial disorders (MD) are another excellent 
example of dysfunctions which are always accompanied by a 
decreased efficiency of ATP production and many other 
abnormalities in bioenergetics. Defects of the respiratory 
chain can be caused by inherited mutations in mitochondrial 
or nuclear DNA contributing to the appearance of isolated or 
combined defects in the respiratory chain complexes. Mito-
chondrial disorders are present in neonates, infants, children 
and adults with a relatively high (1:5000) frequency. The 
clinical picture and progress of MD severity depends on 
many factors, such as heteroplasmy and tissue energy 
requirements – probably the most important parameter, 
because the affected mitochondria cannot supply enough 
energy for proper tissue/organ development and functioning 
[140]. Muscles, peripheral nerves and the central nervous 
system all have high basal energy requirements and thus they 
are most frequently affected in MD. In consequence patients 
suffer from myopathies, cardiopathies, neuropathies and 



Mitochondrial Tolerance to Drugs and Toxic Agents in Ageing and Disease Current Drug Targets, 2011, Vol. 12, No. 6    833 

retinopathies with different outcomes in each affected tissue 
[141]. The diversity of mutations and their effects along with 
the range of symptoms complicate diagnosis, medical inter-
vention as well as scientific investigation of this field.  

f) Mitochondrial Disorders and Oxidative Stress  

 The influence of pathological oxidative stress on the 
development of mitochondrial disorders and on the overall 
antioxidant defense balance is an attractive and current issue 
investigated in our laboratory. We found that fibroblasts 
derived from patients with different mitochondrial disorders, 
regardless of the type of genetic defect, have a dramatically 
higher rate of ROS production and increased level of 
carbonylated proteins [142]. In such affected fibroblasts the 
intracellular oxidative stress related to the mitochondrial 
dysfunction can be a signal for the phosphorylation of 
p66Shc at Ser36 which activates the vicious cycle described 
above for ageing. The overproduction of ROS may addi-
tionally potentiate the mitochondrial dysfunctions. Hispidin 
treatment was sufficient in some cases to decrease super-
oxide production, suggesting that p66Shc is also involved in 
the cellular response to the endogenous oxidative stress 
originally initiated by mitochondrial dysfunction. Moreover, 
in in vitro models, administration of hispidin prevents the 
fragmentation of the mitochondrial network caused by 
hydrogen peroxide (Fig. 2).  

 Recently, a wide range of diseases (cancer, diabetes, 
Alzheimer, Parkinson's disease) as well as ageing have been 
proposed to be due to damage generated by ROS. This 
means that potential therapy or preventive action should be 
aimed at decreasing oxidative stress and/or protecting from 
ROS-induced damage, provided that the mitochondrial 
defect cannot be repaired.  

3) PHARMACEUTICAL THERAPY-RELATED AND 
CHEMICALLY-INDUCED MITOCHONDRIAL DYS-

FUNCTION. DOES IT DEPEND ON AGE AND 

INTENSIFY AGE-DEPENDENT ALTERATIONS?  

 Mitochondria as the center of cellular bioenergetics are a 
perfect target for drugs and xenobiotics used in the treatment 
of various pathological conditions (indirectly or directly 
correlated with mitochondrial dysfunctions like diabetes or 
inherited mitochondrial disorders). Among the numerous 
unwanted consequences of medication, some antibiotics and 
antiviral agents have non-specific effects on mitochondria. 
That is why, when designing new pharmacotherapies, 
account must be taken of potential side effects caused by the 
compound at the molecular level, which in turn may impact 
the patients’ health. Some medical compounds may alter a 
cell’s destiny, which could have repercussions on the whole 
organism’s condition.  

 An increase in mitochondrial dysfunction with age may 
account in part for the greater sensitivity to these pharmaceu-
ticals of the old individuals as compared to young ones.  

a) Mitochondrial Dysfunction Associated with Adminis-
tration of Antibiotics and Anticancer Agents 

 The toxicity of xenobiotics depends on their metabolism 
and renal clearance. These two parameters undergo profound 
changes during the first years of human life [143]. Clinical 
studies have demonstrated that the majority of xenobiotics 
are metabolized at the fastest rate by children and that this 
rate gradually declines with age to the levels observed in 
adults [144]. This renders children more resistant to the 
cytotoxicity of some drugs. Conversely, children are more 
susceptible to drugs and chemicals that undergo metabolic 
activation (conversion to bioactive or cytotoxic metabolites). 

 

Fig. (2). Protective effect of hispidin on mitochondrial structure. Mitochondrial structure in mouse embryonic fibroblasts (MEFs) was 

visualized by expressing the mitochondrial targeted fluorescent marker mtGFP and recorded using a digital imaging system based on a Zeiss 

Axiovert 200 fluorescence microscope equipped with a back-illuminated CCD camera. Induction of oxidative stress by the application of the 

H2O2 (1mM, for 120 minutes) induces morphological changes (a major fragmentation) of the mitochondrial network in control MEFs (A’). 

Although, pre-treatment of MEFs with hispidin (5μM, for 30 minutes) protected mitochondrial network against fragmentation caused by 

H2O2. In this case no significant alterations in mitochondrial structure were observed (B’). 

Untreated + H2O2

+ H2O2Untreated

A A’ B B’
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For example, vincristine a drug that is widely used in the 
treatment of solid tumors is significantly more neuro- and 
hepatotoxic in infants than in older children [145]. The 
toxicity of vincristine has been pinpointed to mitochondrial 
dysfunction [146], including disorganization of mitochon-
drial cristae structure and induction of apoptosis by active-
tion of a mitochondria-dependent apoptotic pathway with 
ROS as an important regulatory factor [147]. Another exam-
ple of a mitotoxic compound is acetaminophen (Tylenol). 
This drug employed in relieving pain is known to be 
hepatotoxic due to induction of mitochondrial dysfunction 
and increased oxidative stress [148]. However, the hepato-
toxicity of acetaminophen metabolites is lower in young 
children than in adults [149] due to the greater capacity of 
detoxification and higher glutathione level in the former 
[150]. 

 The literature offers numerous examples of drugs which 
cause mitotoxicity connected with the distortion of mito-
chondrial energy production. One of them, ciprofloxacin, a 
4-fluoroquinolone antibiotic, is commonly used in treatment 
of bacterial infections and in anticancer therapy. The drug 
inhibits bacterial DNA gyrase. An unwanted side effect is 
that it also inhibits mammalian topoisomerase II, particularly 
its mitochondrial isoform. This causes improper mtDNA 
replication, resulting in mtDNA fragmentation and its 
gradual loss [151-153]. We studied the effects of long-term 
exposure to a relatively low concentration (25 �g/ml) of 
ciprofloxacin on the mtDNA content and mitochondrial 
metabolism. The decreased mtDNA level led to complete 
inactivation of complex I of the respiratory chain. At the 
same time complexes III and IV although reduced were still 
sufficient for electron transport from complex II and from 
other NAD

+
-independent substrates. This in turn deregulated 

the mitochondrial energy state, as evidenced by lowered 
mitochondrial respiration and reduced mt�� and ATP 
formation [152]. 

 Another example of an antibiotic with a broad spectrum 
of activities, effective against a variety of Gram-positive and 
Gram-negative bacteria and believed to cause mitotoxicity is 
chloramphenicol. Studies by Weiss et al. [154] on the 
biological half-life of chloramphenicol in the blood of 
infants, few-day-old, and 5 year old children showed a 
substantial acceleration of chloramphenicol metabolism 
during the first days of life, however later its metabolism is 
gradually reduced. Interestingly, in combination with 
hexachlorophene [155] or diazepam [156], the metabolism of 
chloramphenicol slows down, enhancing its toxicity in 
newborns and neonates. Other data in HepG2 and H1299 
cells show that chloramphenicol induces down-regulation of 
mtDNA-encoded COX I subunit without any alterations in 
nuclear-encoded proteins. Futhermore, this was accompanied 
by the appearance of resistance to mitomycin-induced apop-
tosis probably due to mitochondrial stress. Similar effects 
have been observed for other antibiotics affecting mito-
chondrial translation such as minocycline, doxycycline, and 
clindamycin [157]. Also daunorubicin (DNR) is believed to 
be mitotoxic. This anthracycline antibiotic is a major 
antitumor agent used in the treatment of a variety of malig-
nancies, soft-tissue sarcomas, non-Hodgkin’s lymphoma and 
primarily in the treatment of acute myeloid leukemia and 
acute lymphocytic leukemia [158-160]. The mechanism of 
DNR action, although still not fully understood, involves 

high affinity sequence-specific DNA intercalation [161, 162] 
and its mitotoxicity is connected with ROS generation [163-
167]. Studies performed by Paul et al. examined also an 
immediate effect of DNR on mitochondrial parameters 
[167]. Interestingly, low concentrations of DNR (2-10 mM) 
increased mitochondrial respiration, while higher doses of 
DNR (>10 mM) inhibit complex I-dependent respiration. 
However, further analysis showed that DNR can be accu-
mulated in the inner mitochondrial membrane where it 
enhances electron deviation from the regular respiratory 
chain pathway. This leads to increased ROS generation both 
by complex I and III and additionally amplifies mitochon-
drial dysfunction [163, 167]. 

 The anticancer agent adriamycin (ADR) has long been 
recognized to induce a dose-dependent cardiotoxicity [168-
171]. Although the exact mechanism of this cardiotoxicity 
remains unsolved, it is accepted that it is correlated with the 
induction of mitochondrial ROS production via redox 
cycling of the drug by complex I [172]. Further studies have 
shown high accumulation of ADR within mitochondria [173] 
and also in the nucleus [173, 174].  

 A greater tolerance (resulting in lower mitotoxicity) 
towards the drugs described above as well as many other 
anticancer drugs, observed in children seems to result from a 
higher metabolism rate or renal clearance. This increased 
tolerance in children found confirmation in a work published 
by Glaubiger et al. [175] who evaluated the maximal 
tolerated doses (MTD) of anticancer drugs in children and 
adults. However, even though the MTD for daunomycin is 
approximately 20% higher in children than in adults, they 
seem to be more prone to congestive heart failure [176]. 

b) Antiretroviral Therapy 

 Antiretroviral therapy may also be burdened with the risk 
of mitochondrial failure. Prolonged antiretroviral therapy 
may sometimes abate its beneficial outcome and results in a 
loss of mtDNA content and thus handicapped mitochondrial 
functions [177]. In vitro experiments on Human Aortic cell 
lines (HAECs) have shown that long term treatment with 
some nucleotide reverse transcriptase inhibitors (NRTIs) 
which suppress viral replication, such as zidovudine (AZT), 
may cause increased oxidative stress, augmentation of 
cellular and mitochondrial superoxide production and a 
decrease of mitochondrial membrane potential but without 
alterations in the mtDNA level [178]. Interestingly, it has 
been observed that the incidence of side effects caused by 
AZT is similar in adults and children. However, based on the 
average AZT therapy duration, it seems that children tolerate 
it somewhat better compared to adults [176]. 

4) STRATEGIES OF MITOCHONDRIAL PROTEC-
TION IN AGEING AND IN MITOCHONDRIA-

ASSOCIATED DISEASES – GOOD AND BAD 
THERAPEUTIC APPROACHES 

 Modern therapeutics are in many aspects based on 
traditional medicine. Natural compounds are often used to 
cure common diseases. From the mitochondrial point of 
view the most interesting are those compounds which con-
tribute to the improvement of mitochondrial bioenergetics, 
decrease ROS production, stimulate antioxidant defense 
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system and prevent damage associated with mitochondrial 
disorders. Mitochondrial membrane phospholipids can be 
protected from peroxidation by flavonoids such as kaemp-
ferol, luteolin, myricetin and quercetin present in the diet or 
polyphenols from grapes [179]. Additional protection can be 
provided by 	-3 fatty acids [180]. Dietary habits of popula-
tions are characterized by lowering cancer incidence and 
extending lifespan with a simultaneous low rate of age-
associated diseases. Such features are typical for Mediterra-
nean populations: Greek, Italian, French, Spanish and 
Portuguese [181], whose diet is composed of foods rich in 
antioxidants, as well as substances inducing apoptosis of 
cancer cells and improving mitochondrial metabolism. Such 
compounds are described by The American Dietetic 
Association as ’functional foods’ and ’nutraceuticals’ [182]. 
According to the definition ‘functional food’ must contain 
compounds with beneficial biochemical and physiological 
properties. This includes chemoprotective compounds pro-
tecting from carcinogenesis (resveratrol, curcumin, isofla-
vones), phytochemicals modulating metabolism and 
preventing diseases (lycopene, quercetin, ally-sulphides) and 
nutraceuticals (vitamins, minerals, plant extracts, animal 
extracts like chitosan) [183].  

a) Polyphenols and Flavonoids 

 Curcumin is a widely used polyphenolic compound 
present in a popular spice – turmeric. It has been widely 
demonstrated on animal models as well as human cell lines 
that curcumin has strong chemopreventive properties against 
colon cancer [184, 185]. It has been proposed that the 
induction of apoptosis by curcumin is mediated by the 
mitochondria-dependent pathway [186, 187]. Interestingly, 
studies performed by Volate et al. and confirmed by Kwon 
et al. showed that the level of active caspase-9 is much 
higher (a higher ratio of active caspase-9 to procaspase-9) 
only in young, but not old, rats fed curcumin [188, 189]. 

 Resveratrol, another natural polyphenolic compound 
demonstrating strong antioxidant properties, is present in 
grape skin, so has been present in the human diet for ages. 
This compound was tested for positive action in many 
disease models offering hope of finding a safe pharmacolo-
gical strategy for age-related and neurodegenerative disor-
ders [190]. Resveratrol decreases oxidative stress and 
activates molecular pathways increasing the level of antioxi-
dant enzymes [191]. The senescence-accelerated mouse 
(SAMP1) fed a resveratrol-supplemented diet combined with 
physical exercise had better muscle condition. Mice were 
also protected from an age-associated decline in physical 
strength through activation of mitochondrial genes related to 
bioenergetic functions like oxidative phosphorylation [192]. 
Hence, it is plausible that a similar mechanism may help to 
improve survival time and reduce effects of aging in human 
subjects. In a study of 123 Finnish adults, those born with 
certain increased variations of the SIRT1 gene had faster 
metabolism, helping them to burn energy more efficiently—
indicating that the same pathway shown in laboratory 
animals works in humans [193]. Futhermore, resveratrol pro-
tects against age-induced osteoarthritis disease by preventing 
IL-1�-induced catabolic effects and chondrocyte apoptosis 
via its inhibition of mitochondrial membrane depolarization 
and ATP depletion [194]. In some epidemiological studies, 

consumption of resveratrol has also been also associated 
with a reduced risk of heart disease and improved cardio-
vascular health. Four weeks of treatment with lyophilized 
grape powder containing resveratrol reduced risk factors for 
coronary heart diseases in pre- and post-menopausal women 
[195]. The numerous documented properties of resveratrol 
make it potentially useful in cancer therapy, neuroprotection, 
obesity prevention, therapy of immune disorders, as well as a 
simple dietary supplement that may improve overall body 
condition and preventing ageing-associated health problems 
which depend on mitochondrial functions [196-199]. How-
ever, some scientists, e.g. Galati and coworkers [200] have 
pointed out that flavonoids and polyphenols may also display 
pro-oxidant activities because they can undergo oxidation by 
various peroxidases with superoxide as a product. Curcumin 
and resveratrol, famous for their antioxidant activities, have 
been found to act as pro-oxidative agents for NADH, GSH 
and ascorbate. In any case, when recommending or pres-
cribing such dietary supplements, clinicians should exercise 
special care, in particular when dealing with pediatric 
patients [201].  

b) Herbals 

 Traditional Chinese medicine has also brought successful 
strategies to potentially resolve some major health problems. 
One of them is the metabolic syndrome associated with 
impaired glucose and lipid tolerance as well as hypertension, 
which may lead to a serious threat of cardiovascular disor-
ders and increased mortality. Chinese herbs like ginseng, 
berberine or yang-tonic herbs activate AMPK, the kinase 
responsible for stimulation of mitochondrial energy metabo-
lism or accelerate energy utilization through enhanced ther-
mogenesis. All of them contribute to mitochondrial redox 
stabilization, prevent disease progression, improve health 
and lifespan, and effectively sustain mitochondrial ATP 
production [202, 203]. 4-hydroxybenzyl alcohol (4HBA), a 
compound found in a Chinese herb, Gastroida elata, has 
been used for centuries in concussive disorders. It has 
recently been described as an antioxidant which effectively 
scavenges free radicals and restores a decreased level of 
SOD2 [204]. Gingko biloba extract (EGb) may have a 
protective effect upon chemotherapy. While doxorubicin 
induces apoptosis in cancer cells, normal cells are protected 
by EGb [205]. In another study, protection of rat liver and 
heart mitochondria from swelling and oxidative stress was 
achieved by propolis extract supplementation [206].  

 Various in vivo and in vitro models have been used to 
study the anti-ageing effects as well as improvement of 
mental and physiological parameters thanks to the intake of 
polyphenolic and catechin compounds [207-209]. Studies on 
humans have shown a beneficial effect of black and oolong 
teas. Regular tea drinking may delay the cognitive 
impairment in elderly people [210]. The beneficial properties 
of black tea are connected with the activation of FOXO1a 
transcription factor responsible for transcription of genes 
encoding antioxidant defense enzymes [211]. Green tea 
extract has also been tested for its impact on lifespan in fast 
ageing mouse models (SAMP10). Moreover, the antioxidant 
properties of catechins from green tea prevented memory 
regression due to neuron protection [212] owing to an 
improved glutathione antioxidant system [213]. In aged rat 
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hearts, green tea extract has been demonstrated to lower lipid 
peroxidation, improve redox homeostasis and elevate levels 
of non-enzymatic free radical scavengers [214]. 

 Advanced age is believed to be one of the causes of an 
increased susceptibility to drugs as a consequence of 
alterations in the antioxidant defense system [215, 216]. In a 
large-scale experiment Mahesh et al. examined the influence 
of Terminalia chebula, an Indian-native plant used in 
traditional medicine, on a series of antioxidant defense 
mechanisms and enzyme activities in aged (22-24 months) 
and young (3-4 months) rats [217]. Supplementation with T. 
chebula reduced the levels of lipid peroxidation indicators 
such as malonaldehyde (MDA) and of protein carbonylation 
in the liver and kidney of aged rats. In the young rats this 
effect could only be seen in the liver. The same was true for 
xanthine oxidase level, where T. chebula treatment increased 
the manganese superoxide dismutase (Mn-SOD, SOD2) 
level only in aged rodents. The levels of hydrogen peroxide-
scavenging enzymes, catalase (CAT) and glutathione 
peroxidase (GPx), were lower in aged than in the young rats 
because T. chebula controls the level of lipid peroxides as 
well as other free radicals. Additionally, T. chebula 
increased the GSH level in aged and young rodents in both 
liver and kidney. Hence, the analyzed substance is believed 
to assist aged individuals in reducing oxidative stress by 
means of lowering lipid peroxidation via free radical 
scavenging as well as increasing the activity of antioxidants. 
These effects are not necessarily observed in young animals 
[217].  

 In a study aimed at the young and ageing brain, Srividhya 
et al. highlighted the potential of epigallocatechin gallate 
(EGCG) as an agent capable of counteracting the effects of 
mitochondrial oxidative damage. EGCG supplementation led 
to a decrease in hydroxynonenal (HNE), a lipid peroxidation 
product, in the aged brain. Furthermore, EGCG stimulated 
the antioxidant system and increased the activity of several 
Krebs cycle enzymes. A significant increase was also 
observed in the activities of respiratory chain complexes. 
These effects were not observed in young rodents [218].  

 All the presented reports demonstrating the beneficial 
properties of certain compounds in animal models and the 
fact that humanity has eagerly used their properties for ages, 
indicate that their intake can be harmless. On the other hand 
there is no clear evidence that these compounds do not co-
interact with some medical agents taken simultaneously, 
which could make them a potential hazard. 

c) Vitamins 

 Many scientific reports conclude that a decrease in the 
level of free radicals improves the whole body’s condition, 
such that people believe that administration of antioxidants 
will help them live longer and in good health. This point of 
view has become especially popular following the announ-
cement of Harman’s free radical theory of ageing [116, 219] 
and for many years the concept of vitamins as the best 
antioxidants has prevailed. Vitamin E (VE) (� - tocopherol) 
is responsible for keeping balance between antioxidant and 
prooxidant reactions [220]. Tocopherols are responsible for 
detoxification of peroxyl radicals which attack membrane 
phospholipids [221]. It is believed that owing to high 

consumption of products rich in VE such as vegetable oils 
and nuts Mediterranean populations generally have low rates 
of colon cancer [222]. International cancer prevention 
studies have shown that VE in combination with carotenoids 
and selenium compounds decreases the incidence of some 
types of cancers [222]. 

 Our improved understanding of the multifarious implica-
tions of mitochondrial malfunctioning on redox and energy 
balance has led to the development of a novel type of drugs 
called Mitocans. Mitocans are believed to induce the 
mitochondrial pathway of cell death, but what is particularly 
interesting, mitochondrial disruption is initiated only in 
tumor cells. Among the seven classes of mitocans reported to 
date we find an analog of vitamin E - �-tocopheryl succinate 
(�-TOS) - which induces apoptotic cell death in different 
cancer cell lines by ROS accumulation [223], but in normal 
cells acts as an antioxidant [224]. Several recent reports have 
highlighted the role of mitocans (like e.g. tamoxifen which 
acts on the mitochondrial electron transport chain) as novel 
anti-cancer drugs [225, 226]. Many of these compounds are 
under phase I clinical trials, giving hope for a safer 
anticancer therapy in the future [227].  

 Vitamin C (VC, ascorbic acid), in contrast to tocopherols, 
is a water-soluble, mostly extracellular potent antioxidant. It 
plays an important role in DNA protection and superoxide 
scavenging [221]. Vitamin C is also important for VE 
regeneration, so its everyday administration is an important 
factor maintaining antioxidant defense [228].  

 The role of vitamins from the B group essential for 
mitochondrial metabolism has been reviewed thoroughly in 
the work of Depeint and colleagues [229]. Thiamin in its 
active form -TPP is a cofactor of many crucial enzymes, e.g., 
mitochondrial alpha-ketoglutarate dehydrogenase and 
branched-chain �-keto acid dehydrogenase (deficiency of 
this enzyme is associated with serious pathologies, such as 
beriberi disease, colon and breast cancer, diabetes) [229]. 
Riboflavin and niacin are precursors of, respectively, flavin 
nucleotides and nicotinamide adenine nucleotides. Biotin is 
included in lipid metabolism and disturbances in its content 
are observed in diabetes. In other words, all these com-
pounds are important in energy and redox homeostasis. 
Regular dietary intake of these substances is important as 
their deficiency may upset energetic homeostasis and result 
in serious diseases [229]. Regardless the data indicating the 
positive effects of vitamins in physiological and various 
pathological states, some reports claim that their intake may 
not be associated with any overall benefit or risk [230].  

d) Hormones 

 The mitochondrial theory of ageing offers one explana-
tion why females tend to live longer than males. Females are 
protected against oxidative stress damage by specific 
hormones, and this more efficient protection results in an 
extended lifespan [231]. Basing on this, one can envisage 
lifespan extension by genetic modulation of antioxidant 
defense response. In fact, recent experiments on natural soy 
phytoestrogens, especially genistein, show promising results 
in postmenopausal women [183]. These natural compounds 
actively stimulate mitochondrial antioxidant defense by 
upregulating SOD2 and mtGPx [232]. However, a note of 
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caution is warranted, as the latest reports suggest that 
phytoestroegen treatment may also increase the risk of 
hormone-induced cancer [233].  

 Numerous studies identify melatonin, a hormone secreted 
by the pineal gland, as a potent mitochondria-targeted 
antioxidant with many positive effects, e.g., on the immune 
system [234, 235]. In fact, its activity has been correlated 
with antioxidant defense in several oxidative stress-induced 
pathologies [234]. Melatonin is believed to be an important 
factor in cardiac ischemia/reperfusion injuries and contri-
butes in the adaptation to disrupted redox balance [236]. 
Moreover, it has been demonstrated that melatonin protects 
against ROS-induced mt�� collapse and PTP opening in rat 
brain astrocytes [237]. Studies on senescence-accelerated 
mouse (SAMP8) have also revealed melatonin anti-ageing 
properties. All tested oxidative stress markers in brain 
mitochondria show that melatonin administration protects 
against age-related decreases in ATP production and lipid 
peroxidation and increases the levels of antioxidant enzymes. 
Interestingly, females respond better to this kind of antioxi-
dant therapy than males [238]. It has also been indicated that 
melatonin is an efficient antioxidant in the therapy of various 
mitochondrial disorders and can limit ROS production 
causing mtDNA mutations [239]. However, melatonin is not 
the only example of a hormone possessing antioxidant 
properties. Dehydroepiandrosterone (DHEA) and its sulfated 
conjugate (DHEA-S) also demonstrate similar properties. 
DHEA is a commercially available diet supplement which is 
believed to have a rejuvenating impact on humans. It is the 
so called ‘youth hormone’ with a well documented positive 
impact on mitochondrial energy metabolism. Studies by 
Patel and colleagues [240] on dehydroepiandrosterone-
stimulated mitochondrial respiration in rat liver and brain 
have indicated that DHEA can help balance the cellular 
metabolism in the liver of old and young rats. The activity of 
dehydrogenases was up-regulated only in old animals 
supporting the idea of DHEA anti-ageing effect and its role 
in progression of some age-related and neurodegenerative 
diseases [241-243]. Positive trials involving this compound, 
already widely available in pharmacies, enabled it’s 
recognition as an effective vitality-improving agent and even 
won it the name “wonder drug”. However clinical studies on 
144 elderly representatives of both sexes undermined it’s 
beneficial effects [244].  

e) Lipoic Acid and Acetyl-L-Carnitine 

 Lipoic acid (LA), an organosulfur compound is an essen-
tial cofactor for many enzyme complexes. Dietary supple-
mentation with lipoic acid has a rejuvenatory impact on 
hepatic mitochondria of old rats by restoring their membrane 
potential and lowering the rate of respiration, but has no 
effect on young animals [245]. Positive effects were also 
observed in the heart and muscle of old rats, where the 
mitochondrial potential and cardiolipin content were restored 
to the levels found in young animals and respiration 
improved [246]. The protective and anti-ageing properties of 
lipoic acid are connected with p38 MAP kinase activation 
and increased activity of peroxisome proliferator-activated 
receptor gamma coactivator 1-alpha (PGC1�) which is a 
transcriptional coactivator that regulates genes involved in 
energy metabolism. This in turn decreases oxidative stress in 

mitochondria by AMPK activation, which may have impact 
on glucose metabolism [247]. 

 A similar age-dependent drug efficacy was observed by 
Long and coworkers for acetyl-L-carnitine (ALC) as well 
[248]. Ample data document positive effects of LA and ALC 
on a variety of age-related mitochondrial dysfunctions [249], 
including their repair after age-induced ultrastructural decay 
[250] as well as cognitive disorders in rats [249, 251]. 
Among other reported benefits of LA and ALC treatment are 
reduced symptoms of neurodegeneration [252], modest 
efficacy towards neuropatic deficits in diabetes [253] and 
even some effectiveness in hypertension therapy [254]. 
Treatment of old rats with combination of LA and ALC 
leads to a partial recovery of activity of complexes I and IV 
and a decrease of MDA and protein carbonyl levels. Interes-
tingly, this effect concerns only the activity of complexes I 
and IV, because mitochondrial protein expression is 
unaffected, except for complex V whose level in old rats 
increased. In conclusion, LA/ALC treatment allows full or 
partial recovery of mitochondrial functions to a level 
observed in young rats [248]. 

f) CoQ and its Derivatives 

 As was already mentioned, diverse chemical compounds 
either synthetic or naturally found in plants and fungi affect 
mitochondrial structure and/or metabolism. However, not 
many of them penetrate mitochondria as well as the mito-
chondria-targeted ubiquinones do. In this group of com-
pounds, apart from research tools one also finds potential 
therapeutic agents with strong antioxidant properties. Their 
structure is based on the endogenous ubiquinone coenzyme 
Q10 (CoQ) which is a redox-active molecule. Its hydro-
phobic nature keeps it associated with phospholipids in the 
inner mitochondrial membrane where it is involved in the 
electron transport through the respiratory chain [255]. 
Diverse CoQ analogs interact differently with respiratory 
chain complexes and have an ability to scavenge ROS 
directly in the site of their production [256] preventing lipid 
peroxidation and ROS-induced oxidative damage [257]. The 
discovery of MitoQ, a ubiquinone derivative with good 
antioxidant properties and positive effects on mitochondria, 
has resolved the problem of ubiquinone delivery to 
mitochondria [256, 258]. Recent experimental data docu-
ment the therapeutic applicability of MitoQ in endotoxin-
induced cardiac damage [259]. It has also been reported that 
MitoQ can be very effective in protecting vascular tissue and 
cardiac muscle against hypertension-induced hyperthrophy 
in rats, which opens up a perspective for its application also 
in cardiovascular therapy in humans [260]. MitoQ, apart 
from its antioxidant activity may play an important role in 
maintaining calcium homeostasis [261]. MitoQ shows 
protective antioxidant properties not only in humans and 
rodents but also in Drosophila melanogaster, where it 
increases the lifespan even in the absence of superoxide 
dismutase [262]. Other studies show that in astrocytes MitoQ 
contributes to neuroprotection by attenuating mitochondrial 
ROS formation [263] and can prevent ROS-dependent 
amyloid formation in patients with Alzheimer's disease 
[264]. 

 Mitochondria-targeted cations conjugated with antioxi-
dant compounds have attracted keen interest of the renowned 
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bioenergeticist Vladimir P. Skulachev, who has recently 
founded a consortium investigating a novel antioxidant 
molecule called SkQ [265]. SkQ and its derivatives, simi-
larly to MitoQ, can penetrate the mitochondrial membrane 
with high efficiency and act directly in the site of ROS 
production. Similarly to MitoQ it also demonstrates concen-
tration-dependent, potent anti- and prooxidant properties 
[266]. While high doses of SkQ can induce apoptosis and 
necrosis, low concentrations (0.2 nM) block both these 
processes in human fibroblasts treated with H2O2. In his 
recent work, Skulachev concluded that SkQ is more efficient 
in OH

�
 radical scavenging than MitoQ and it penetrates the 

mitochondrial membrane two times faster. All these pro-
perties were also observed in animal studies. SkQ adminis-
tration seems to be effective in fighting age-associated 
dysfunctions of the heart, brain and kidney. The most amaz-
ing results concern retina healing by SkQ supplementation. 
This compound was able to return vision to blind OXYS rats 
suffering from retinopathies and cataract associated with 
increased ROS level and ageing. Additional data about 
inhibition of tumorigenesis and the ability to prolong the life 
span while keeping youthful performance strengthen the 
initiative to use SkQ and similar compounds in medical 
practice [267].  

g) PKC��  as a New Pharmacological Target in the 
Control of Mitochondrial-Dependent Ageing  

 PKCs are serine-threonine protein kinases that participate 
in the transduction of extracellular signals into the cell. They 
form a heterogenous group differing in activation mecha-
nisms (the classical PKC is activated by Ca

2+
 and diacyl-

glycerol, the novel by diacylglycerol alone, and the atypical 
are insensitive to either), substrate specificity and cellular 
distribution. This allows them to have very different func-
tions, and indeed as far as apoptosis is concerned different 
PKC isoforms have been demonstrated to play opposite roles 
[268]. H2O2 and other oxidizing agents cause the translo-
cation of different PKC isoforms to membranes [269], an 
early and necessary event in PKC activation. Mitochondria 
and their Ca

2+
 signaling events are modulated by PKC 

activity in a very diversified manner. Some isoforms such as 
PKC� do not affect Ca

2+
 homeostasis at all, while at the other 

extreme PKC� induces a global alteration by reducing Ca
2+

 
release from the endoplasmic reticulum (ER), and thus 
affecting Ca

2+
 signals detected both in the cytosol and in 

mitochondria. Some isoforms display a “pure” mitochondrial 
effect: they do not alter Ca

2+
 release from the ER (and thus 

the Ca
2+

 rise in the cytosol), but increase (PKC�) or decrease 
(PKC�) the mitochondrial Ca

2+
 rise [270]. Thus, they prob-

ably act on a mitochondrial effector that either stimulates the 
Ca

2+
 uptake machinery and/or affects the thermodynamic 

driving force for cation accumulation in the matrix. 

 Recent evidence indicates that p66Shc protein is the pro-
apoptotic (i.e. “ageing”) effector system. As was mentioned 
before phosphorylation of p66Shc on Ser36 is required for 
its pro-apoptotic function [131]. This phosphorylation can be 
mediated by several protein kinases and different pieces of 
evidence suggest that a protein kinase C (PKC)-mediated 
signalling route plays an important role in linking ROS 
production to the ageing effects of p66Shc [138]. In 
particular, we have recently shown that silencing of PKC� 

protects cells against H2O2 challenge. Furthermore, 
over-expression of PKC� reproduces a Ca

2+
 signaling defect 

only in cells expressing p66Shc. Thus, there is a strong 
dependence between PKC� and p66Shc activity at the 
mitochondrial level, which can be explained by alterations in 
mitochondrial Ca

2+
 homeostasis. Activation of PKC� by 

oxidative stress leads not only to phosphorylation of p66Shc 
but also promotes binding of p66Shc to Pin1, a peptidyl-
prolyl isomerase that induces cis-trans isomerization of 
phosphorylated Ser-Pro bonds [271]. Moreover, it has been 
shown that the phosphorylated sites once isomerized by 
Pin1, become targets for dephosphorylation by PP2A [271]. 
At this point, the p66Shc translocated into the appropriate 
cell domain (mitochondria) can exercise its oxidoreductase 
activity, thereby generating H2O2 and inducing the opening 
of PTP and in turn apoptosis (and ageing). 

 In the light of these considerations, we investigated the 
ability of hispidin, a specific PKC� inhibitor, to interfere 
with the p66Shc-dependent regulation of the mitochondrial 
pathway controlling lifespan. Hispidin (6-(3,4-dihydroxy-
styryl)-4-hydroxy-2-pyrone) has been isolated from 
Phellinus pomaceus and studied as a potential anticancer 
agent due to being a selective PKC-�s inhibitor [272]. 

 Our groups analyzed the effect of hispidin on mito-
chondrial morphology (Fig. 2) and Ca

2+
 dynamics [270]. The 

results obtained when analyzing mitochondrial Ca
2+

 homeo-
stasis matched those obtained by overexpressing PKC� 
isoform. The inhibition of PKC� caused a significant 
increase of the mitochondrial calcium ([Ca

2+
]m). Moreover, 

all the p66Shc-dependent mitochondrial consequences of 
hydrogen peroxide (in terms of mitochondrial morphology 
and Ca

2+
 homeostasis) were also blocked by hispidin [138].  

 Overall, these results identify and clarify a novel signal-
ing mechanism, operative in the pathophysiological condi-
tion of oxidative stress, and may open new possibilities for 
pharmacologically limiting organ deterioration during 
ageing. This prospective is particularly intriguing consider-
ing that a novel, highly selective inhibitor of PKC�, ruboxi-
staurin (LY333531) mesylate, is currently undergoing phase 
III clinical studies in patients with type 1 or 2 diabetes to 
investigate prevention and/or reduction in clinical symptoms 
of diabetic microvascular complications. 

h) Pharmacological Therapy of Glucose Metabolism 
Dysfunction 

 The long list of mitochondria-associated diseases starts 
with diabetes mellitus (DM), a global problem. The battle 
against diabetes and its complications involves a confronta-
tion with high levels of ROS produced in cells exposed to 
high levels of glucose [273]. The resulting high NADH+H

+
/ 

NAD
+
 ratio promotes electron leakage from complexes I and 

III of the respiratory chain. The high, non-physiological level 
of ROS can contribute to serious complications of DM like 
atherosclerosis, cardiac failure and endothelial dysfunction 
[274]. All these events are accompanied by up-regulated 
senescence markers, like p66Shc and Ser36-phosphorylated 
p66Shc [275, 276]. Experiments carried out both by Menini 
et al. and Rota et al. showed that ablation of this redox-
sensing protein improves bioenergetic parameters and 
antioxidant defences in a cellular model of insulin-dependent 



Mitochondrial Tolerance to Drugs and Toxic Agents in Ageing and Disease Current Drug Targets, 2011, Vol. 12, No. 6    839 

diabetes mellitus [277, 278]. Additional evidence for an 
involvement of elevated ROS in diabetes is that pancreatic 
beta cells cultured for a long time in high-glucose medium 
undergo oxidative stress-induced apoptosis [279]. Many 
anti-diabetic drugs are co-aimed at overcoming mtDNA 
mutations by means of stopping the enhanced ROS forma-
tion [274]. One of them, metformin, acts on complex I and 
stimulates glycolysis [280]. Recently two other positive 
effects of metformin have been discovered: the ability to 
inhibit PTP opening and activation of the p53 pathway 
promoting lower rate of tumorigenesis in diabetic patients 
[281]. A possible way to avoid islets’ damage and diabetes 
progression may be the application of mitochondria-targeted 
antioxidants. For example, an anti-inflammatory and cyto-
protective agent, gallic acid, promotes insulin secretion and 
protects cells against glucolipotoxicity [282]. Moreover, the 
effects of metformin, may be enhanced by baicalin, a 
flavonoid well known for its ROS scavenging abilities. It 
seems that such pharmacological intervention protects 
mitochondrial membrane phospholipids especially from the 
destructive action of superoxide [283]. Mitochondria can 
also be a target of other commonly used anti-diabetic agents 
like sulphonylureas (SUR). Receptors for SUR, present in 
the plasma membrane, can bind drugs like glibenclamide or 
glipizide, which results in insulin release from beta cells. 
Similar channels are found in the mitochondrial membrane 
and sulphonylureas have been shown to bind them as well, 
thus rendering mitochondria their pharmacological target. 
Additionally, sulphonylureas affect mitochondrial fatty acid 
metabolism due to their ability to inhibit carnitine palmitoyl-
transferases and pyruvate carboxylase [284, 285]. In a ten 
times higher concentration, sulphonylurea and its derivatives 
can slow the tumorigenesis by induction of mitochondrial 
damage, OXPHOS uncoupling and ATP collapse in tumor 
cells [286]. However, it is suspected that accumulation of 
these compounds in the liver and kidneys affects mitochon-
drial energetics, thus inducing undesirable side-effects. On 
the another hand, the ability of sulfonylureas to uncouple 
mitochondria may have a positive effect on the inhibition of 
ROS production [287]. It has been reported that mild 
uncoupling may lower the rate of mitochondrial ROS 
production and thus may help in the battle against diabetes. 
This is the reason why so many scientists investigate UCPs 
in order to find a way to regulate their level and functioning 
in diabetes. Large-scale studies are being conducted in order 
to find safe agents able to imitate UCPs action [288].  

 More recent studies showed that such beneficial uncoup-
ling may also be achieved by curcumin administration [289] 
as well as dinitrophenol (DNP). The beneficial or harmful 
effect of DNP is dose dependent [290]. Its uncoupling pro-
perties have been employed in obese treatment by increasing 
oxygen consumption and stimulating mitochondrial metabo-
lism leading to weight loss after dietary intake [290, 291]. 
Such activity leads to lowering of ROS production in 
Drosophila [292] and in mammals [293]. However, an 
overdose of DNP results in serious adverse effects like 
cataract, gastrointestinal, and cardiorespiratory problems 
[290]. Despite the fact that many serious medical cases 
associated with DNP intake in high doses have determined 
this compound as hazardous, people concerned about their 
body shape, particularly body-builders, include DNP as a 
dietary supplement during special diets. It must be said that 

such action is irresponsible and may lead to life-threatening 
repercussions. Despite toxic effects of high doses of DNP its 
reasonable administration tested on animal models, seems to 
be neuroprotective in the case of increased mitochondrial 
ROS production or intracellular Ca

2+
 induced excitoxicity 

[294].  

i) Pharmacological Therapy of Respiratory Chain 
Dysfunctions 

 Currently available therapies for mitochondrial disorders 
are based on prevention of the worsening symptoms by pro-
per nutrition of the patients [295]. Pharmacological treatment 
includes mitochondria-targeted ubiquinon and ubiquinol, 
vitamins (riboflavin, vit C, vit E, vit B such as folic acid), 
lipoic acid, creatine, L-arginine and L-carnitine [296]. In fact 
the best strategy to improve health of patients with 
mitochondrial disorders relies on so called ‘mitochondrial 
cocktails’ which contain a combination of various antioxi-
dants. A mitochondrial cocktail is created to decrease the 
production of free radicals either by quenching ROS 
(vitamin C, tocopherols, lipoic acid) or bypassing and using 
alternatives to the affected pathways (creatine, CoQ10, 
riboflavin). This approach minimizes the pathological 
consequences of mitochondrial cytopathies [297].  

 Though the bioenergetic parameters seem to be improved 
in laboratory studies, they are not necessarily directly pro-
portional to the overall condition of patients. As was 
reported in case of a one-year-long therapy of 12 patients, 
CoQ10 was able to improve ATP synthesis but not the 
overall health condition. Thus it revealed a need to perform 
more detailed studies on dosage and therapy time as well as 
the combination of treatment components for each mitochon-
drial dysfunction. Additionaly therapy may be successful 
only when the patient’s condition is stable. That is why one 
of the standard recommendations is a precise control of 
patient’s parameters as any infectious disease or biochemical 
disturbance may change the pharmacokinetics of applied 
compounds. 

 Dichloroacetate (DCA), an analog of pyruvate, has been 
exploited for over 50 years in treatment of mitochondrial 
disorders. Its basic application concerns pyruvate dehydro-
genase deficiency, however, nowadays it is part of a 
combined metabolic therapy. Though DCA therapy has been 
reported to be safe, some toxic, age-related neurotoxicities 
have been observed in rats and humans. DCA has recently 
become less popular despite ample data about its effective-
ness [298]. 

 CoQ10 due to its antioxidant properties, decreases the 
rate of free radicals-induced DNA damage. CoQ10 adminis-
tration improves physical performance of healthy subjects 
and patients with MELAS and MERRF syndromes. More-
over, some pathologies like Leigh syndrome are connected 
with CoQ10 deficiency [299], so the administration of 
ubiquinones is reasonable and effective. In the case of 
Friedreich’s ataxia (a serious mitochondrial disorder asso-
ciated with high production of the very reactive hydroxyl 
radical), therapy with the CoQ10 analog idebenone results in 
reduction of cardiac muscles hypertrophy [300]. Moreover, 
idebenone administration improves mitochondrial metabo-
lism in the brain and muscles of patients with Leber 
hereditary optic neuropathy [301, 302]. Combination of 
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CoQ10 with lipoic acid and creatine appears to be effective 
in an experimental trial involving 16 patients with diverse 
mitochondrial cytopathies. Such treatment improves ener-
getic metabolism and decreases the level of plasma lactate 
and urinary 8-isoprostanes [303]. Dietary supplementation 
with riboflavin has been reported to improve muscle 
condition in some cases of complex I deficiency. Though 
there are not many reports on thiamin therapeutic trials, it 
has been applied in PDH deficiency syndromes. Vitamin K 
as a phylloquinone or menadione derivative acts as an 
electron carrier and improves clinical and biochemical 
parameters of patients with complex III deficiency [304].  

 The normal requirement for creatine, an essential com-
pound in energy production, is fulfilled by dietary intake. 
Creatine monohydrate administration decreases free radical 
production and formation of paracrystalline inclusions in 
patients with mitochondrial DNA mutations [296, 305, 306]. 
Creatine supplementation can also be beneficial in other 
disorders with a mitochondrial background, like muscular 
dystrophy (Duchenne and Becker’s dystrophy), McArdle’s 
disease [307] and in Parkinson’s disease. Combined creatine 
and CoQ10 therapy results in decreased lipid peroxidation 
and DNA damage and improved glutathione homeostasis 
[308]. A relevant energy state is necessary to maintain 
proper functioning of synapses, in which mitochondria are 
the main source of ATP. Appropriate mitochondrial bioener-
getic characteristics are a buffer for calcium homeostasis, 
which is essential in many fundamental cellular processes. 
The evident improvement of mitochondrial bioenergetics 
offers hope for future application of these compounds in 
neurodegenerative disorders, like Alzheimer’s and Parkin-
son’s disease as well as amyotrophic lateral sclerosis (ALS) 
and Huntington’s disease [309].  

 L-carnitine, another ingredient of the ‘mitochondrial 
cocktail’, is not associated with mitochondrial bioenergetics 
as such, but rather with proper lipid metabolism [296]. L-
carnitine protects the brain from consequences of metham-
phetamine (MPTP) intoxication [310]. Administration of 
acetyl-L-carnitine in combination with �-lipoic acid had a 
positive effect in cases of mood disorders [311]. 

 Cytochrome c oxidase (COX) deficiency is one of the 
most frequent biochemical diagnoses in lethal neonathal and 
infantile respiratory chain deficiency disorders. It is thought 
to occur in approximately one in 7000 - 10000 newborns 
[312, 313]. COX deficiency can be associated with muta-
tions in the SCO2 gene encoding a mitochondrial copper-
binding protein. SCO2 mutations cause abnormal 

64
Cu 

uptake in fibroblasts and increased basal copper concen-
trations in myoblasts. Interestingly, COX activity was res-
cued after copper-histidine supplementation to sco2 mutant 
myoblasts [312]. Several reports have also indicated good 
efficacy of this compound in early treatment of Menkes 
patients [314-316]. Although the exact mechanism of rescue 
of the biochemical defect remains unclear, the results of the 
copper supplementation experiments suggest a possible 
therapy [312]. 

 In a recently published paper on bipolar disorder Maurer 
and coworkers examined the stimulating effect of lithium 
(Li

+
) on the respiratory chain [317]. Studies of brain energy 

metabolism in bipolar disorder suggest an impairment of 
energy generation by mitochondrial oxidative phosphoryla-

tion. Although Li
+
 is an effective drug widely used in this 

disorder its mechanism of action remains uncertain. These 
provided evidence that the activities of complexes I and III 
as well as II are dose-dependently increased by Li

+
. The 

activity of succinate dehydrogenase remains unchanged at 
low Li

+
 concentrations, but increases when higher doses are 

used. In contrast, the activity of COX is not significantly 
affected [317]. 

 Beneficial properties of the trace element selenium (Se) 
were first demonstrated several decades ago. These pro-
perties have been correlated both with low-molecular 
selenium compounds as well as selenoproteins in which it is 
present in the form of the amino acid selenocysteine (Sec) 
[318]. Some properties of selenium compounds have not yet 
been described in full. However, among their characterized 
functions is an antioxidant activity due to the presence of 
selenocysteine residues in ROS-detoxifying selenoenzymes 
like GPx, thioredoxin reductases (TrxR) and possibly seleno-
protein P (SeP). Basing on published data that selenium 
supplementation has a cytoprotective effect towards different 
cell types such as neurons, astrocytes and endothelial cells 
[319-321], it has been proposed that maintenance of an 
appropriate level of selenium could help in preventing 
neurological and cardiovascular disorders [322]. 

 The take-home message from all clinical studies with 
antioxidant compounds or diet supplements indicates that 
potentially we can create successful therapies merged with 
our everyday habits. More and more specialists share the 
opinion that the observed improvement of health conditions 
and prolongation of lifespan is their effect. As long as long 
term studies on potential serious side effects do not exclude 
these compounds we can enrich our diet in available 
antioxidants. 

j) Carvedilol 

 A recent study highlights carvedilol (CAR) as a possible 
agent for prevention of age-induced behavioral, biochemical, 
and mitochondrial dysfunctions [323]. CAR is a nonselective 
�-adrenoreceptor blocker with multiple pleiotropic antioxi-
dant-like actions useful for the treatment of several ageing-
related diseases such as neurodegenerative diseases and 
dementia [324], diabetes mellitus [325] and cancer [326]. 
Among other functions at cellular level CAR has also been 
reported to have anti-inflammatory activity [327], block 
calcium channels, non-competitively inhibit NMDA recap-
tors [328], and act as a mitochondrial protective agent of 
mitochondrial structural integrity and [329]. Earlier studies 
show that CAR acts as a neuroprotective compound in some 
models of transient focal [330] and tardive diskinesia [331]. 
It has also been demonstrated to have nephroprotective 
activity [332] and a cardioprotective effect in different types 
and models of cardiovascular ischemia and reperfusion [333, 
334]. Administration of CAR

 
in older patients who have high 

levels of oxidative stress in the myocardium due to heart 
failure also resulted in a decrease of malondialdehyde 
(MDA) levels, without changes in anti-oxidant enzyme 
activities [335] together

 
with amelioration of cardiac 

function [336].  

 Kumar with coworkers [323] found good neuroprotective 
potential of CAR against D-galactose-induced oxidative 
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damage, mitochondrial dysfunction and cognitive impair-
ment in mice. Antioxidant effect of carvedilol on cardiac 
mitochondria was extensively studied by Oliveira and 
coworkers. They described many examples for the mito-
protective effect of carvedilol upon oxidative stress [337-
340]. The mechanism, although still to be solved is likely to 
involve antioxidant and mitochondrial pathways [341-344]. 

k) Helium Preconditioning 

 Preconditioning has been long believed to be an effective 
method of preventing tissue damage during ischemia-reper-
fusion interventions due to incidents such as acute myo-
cardial infarction, heart failure, sudden cardiac death and 
arrhythmias in humans and animals [345-347]. In an experi-
ment conducted by Heinen et al. it has been established that 
anti-ischemic cardioprotection can be obtained with helium-

induced preconditioning. However, this treatment proved to 
be effective only in young individuals [348]. The authors 
concluded that helium induces cardioprotection by activating 
mitochondrial Ca

2+
-sensitive potassium channels. At the 

same time mild uncoupling of mitochondria occurs. This is 
believed to be a typical characteristic of “preconditioned” 
state mitochondria [349-351]. It is also proposed that the 
helium-induced preconditioning is initiated at the level of 
several pro-survival signaling kinases. The results obtained 
by Heinen et al., in accordance with those of other authors, 
indicate that the cardioprotective properties of helium are 
lost in the aged rat and do not reduce the infarct size [348, 
352, 353]. The reason behind the loss in the treatment 
aptitude in senescent rats remains unknown. The authors 
propose that it is either due to defects of the mitochondrial 
KCa channels or somewhere upstream in its signaling cascade 
[348]. 

 

Fig. (3). Positive and negative effects of compounds commonly used in treatment of mitochondrial disorders, anticancer therapy and 

anti-ageing dietary supplements employed in everyday life. Zn/Cu SOD, SOD1, superoxide dismutase 1; DNP, dinitrophenol; Cat, 

catalase; MDs, mitochondrial disorders; LA, lipoic acid; 4HBA, 4-hydroxybenzyl alcohol; AMPK, AMP-activated protein kinase; MnSOD, 

SOD2, superoxide dismutase 2; GPx, glutathione peroxidase; PKC �, protein kinase C �; CoQ10, coenzyme Q10; DHEA, 

dehydroepiandrosteron; ALC, acetyl-L carnitine; (PEO), Progressive External Ophtalmoplegia; (MELAS), Mitochondrial 

Encephalomyopathy, Lactic Acidosis, and Strokelike episodes; (MERRF), Myoclonic Epilepsy with Ragged Red Fibers; (NARP), 

Neuropathy, Ataxia and Retinitis Pigmentosa. 
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CONCLUSIONS AND PERSPECTIVES 

 In conclusion, we have demonstrated how mitochondria 
and various mitochondria-associated pathways respond to a 
variety of pharmaceutical compounds (Fig. 3). These factors 
include registered drugs and other chemicals, and account for 
diverse consequences which vary depending on the physio-
logical condition. Research provides clear evidence that 
certain compounds present in drugs or nutraceuticals may 
cause positive and negative alterations in the mitochondrial 
metabolism which as a matter of fact sometimes depend on 
the age of treated subjects. Such knowledge is particularly 
important because, as was stated in this review, some agents 
demonstrating beneficial effects in certain age groups may 
be ineffective in others or even account for additional toxi-
city. There is no unambiguous tendency that the effective-
ness or toxicity prevails in a certain age group, in general it 
is without doubt that age-dependent metabolism is an 
essential factor. Although many of the presented agents have 
only been tested on animals and cell lines a clear conclusion 
that can be drawn from the research is that a great potential 
lays in available compounds as long as they are used with an 
understanding of certain mechanisms underlying age-dep-
endent aptitude. It is therefore particularly important always 
to take into consideration individual predispositions such as 
diagnosed disorders or simply the stage of one’s life when 
engaging rejuvenating treatments or prescribing medications 
or diet supplements. Such precautions should particularly be 
undertaken when working with young patients. Profound 
understanding of treatment mechanisms combined with deep 
comprehension of medical conditions should enable the 
development of new therapies bringing hope of overcoming 
diseases incurable at the moment. 
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