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SUMMARY

PTEN dysfunction plays a crucial role in the patho-
genesis of hereditary and sporadic cancers. Here,
we show that PTEN homodimerizes and, in this
active conformation, exerts lipid phosphatase activ-
ity on PtdIns(3,4,5)P3. We demonstrate that catalyti-
cally inactive cancer-associated PTEN mutants
heterodimerize with wild-type PTEN and constrain
its phosphatase activity in a dominant-negative
manner. To study the consequences of homo- and
heterodimerization of wild-type and mutant PTEN
in vivo, we generated Pten knockin mice harboring
two cancer-associated PTEN mutations (PtenC124S
and PtenG129E). Heterozygous PtenC124S/+ and
PtenG129E/+ cells and tissues exhibit increased sensi-
tivity to PI3-K/Akt activation compared to wild-type
and Pten+/� counterparts, whereas this difference
is no longer apparent between PtenC124S/� and
Pten�/� cells. Notably, Pten KI mice are more tumor
prone and display features reminiscent of complete
Pten loss. Our findings reveal that PTEN loss
and PTEN mutations are not synonymous and define
a working model for the function and regulation
of PTEN.
INTRODUCTION

Phosphatase and tensin homolog deleted on chromosome ten

(PTEN) is a tumor suppressor frequently lost or mutated in

human cancers and in a number of tumor syndromes, referred

to as ‘‘PTEN hamartoma tumor syndromes’’ (PHTS), which

include Cowden disease (CD) and Bannayan-Zonana syndrome

(Hollander et al., 2011).

To study the consequences of Pten loss in vivo, we and others

generatedanimalmodelswithpartial and total lossofPten (DiCris-

tofano et al., 1998; Podsypanina et al., 1999; Suzuki et al., 1998).

Total Pten loss was found to lead to embryonic lethality, and addi-

tional investigations in a hypomorphic allelic series of mice with

sequentially lowerPtenexpression revealed thatevensmall reduc-

tions in Pten doses can elicit cancer phenotypes (Alimonti et al.,

2010; Trotman et al., 2003). Conversely, systemic elevation of

Pten through transgenic overexpression results in a constitutively

augmented tumor-suppressive state (Garcia-Cao et al., 2012).

PTEN functions as a dual-specificity protein phosphatase

(DSP) with predominant enzymatic activity on phosphoinositides

(Maehama and Dixon, 1998). As a phospholipid phosphatase,

PTEN catalyzes the hydrolysis of the second messenger PtdIns

(3,4,5)P3 (PIP3) and counteracts the activation of the PI3K/AKT

pathway, thus regulating cellular growth, proliferation, andmeta-

bolism (Maehama and Dixon, 1998).

In line with its protein phosphatase function, PTEN has been

shown to dephosphorylate phosphopeptides in vitro (Myers
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et al., 1998), and reported phosphoprotein targets include the

focal adhesion kinase, c-SRC, as well as PTEN itself (Tamura

et al., 1999; Tibarewal et al., 2012; Zhang et al., 2011).

Heterozygous deletion of Pten in mice faithfully phenocopies

biological features found in many human tumors with partial

loss of PTEN (Di Cristofano et al., 1998). However, reports indi-

cate that genetic loss of PTEN and mutations leading to PTEN

loss of function may not be equivalent. For instance, Marsh

et al. (1998) reported a genotype-phenotype correlation in

patients diagnosed with CD who developed several tumors,

including breast tumors. Importantly, they found that patients

harboring missense PTEN mutations in the phosphatase core

developed higher numbers of lesions than patients with trun-

cating mutations (Marsh et al., 1998). This led us to hypothesize

that expression of catalytically inactive mutant PTEN enzyme

may be more unfavorable than PTEN protein loss.

Regulation of PTEN function occurs through various posttrans-

lational modifications implicated in PTEN membrane recruit-

ment, subcellular localization, or protein-protein interactions

(Wang and Jiang, 2008). Structurally, PTEN belongs to the Class

I Cys-based protein tyrosine phosphatase (PTP) and, more spe-

cifically, to the VH1-like family (Alonso et al., 2004). PTEN con-

tains an N-terminal phosphatase domain with a conserved active

site; a C-terminal C2 domain followed by two PEST sequences

and a PDZ-binding domain (Lee et al., 1999). It has been reported

that PTEN interacts with a number of PDZ-domain bearing pro-

teins to achieve higher levels of complex formation (Sotelo

et al., 2012; Vazquez et al., 2001). We therefore hypothesized,

and have here demonstrated, that PTEN can interact with itself.

We show that dimer PTEN is active toward its phosphoinositide

substrate PIP3 and thereby inhibits the activation of the PI3K/

AKT signaling pathway. Critically, we find that in adimeric confor-

mation, cancer-associated missense mutations have dominant-

negative consequences over wild-type (WT) protein function,

with ensuing implications for tumorigenesis.

RESULTS

PTEN Exists in a Dimeric Complex
Given that VH1-like phosphatases are known to exist in higher

order complexes/dimers (Koksal andCingolani, 2011), we exam-

ined whether PTEN could form similar complexes. For this, we

performed coimmunoprecipitation (co-IP) experiments using

the PTEN null cell line PC3. By cotransfecting differentially

tagged PTEN variants we were able to reciprocally co-IP

GFPPTEN and MycPTEN (Figure 1A). Moreover, in 293T cells

overexpressing GFPPTEN, we were able to co-IP endogenous

PTEN (Figure 1B).

Monomeric PTEN has a molecular weight of 50–55 kDa in

denaturing conditions. If a dimeric PTEN existed, it would

migrate at double that size in nonreducing and nondenaturing

SDS-PAGE. Accordingly, immunoprecipitation (IP) and native

elution of MycPTEN from transfected PC3 cells revealed the

presence of two bands consistent with the monomeric and

dimeric status of the protein (100 kDa circa) (Figure S1A available

online). To control for overexpression artifacts, we repeated this

assay by pulling down endogenous Pten in NIH 3T3 and

confirmed the presence of two bands (Figure 1C).
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Next, we investigated the contribution of covalent and nonco-

valent interactions to dimer formation and found that disulfide

bonds are not a major requirement for the stabilization of this

interaction (Figure S1B). We also verified PTEN homodimeriza-

tion in vitro by coexpressing GST-PTEN and His-PTEN in bacte-

ria. In these experiments, we successfully recovered His-PTEN

in GST-PTEN pull-downs (Figure 1D).

To further validate the direct binding between PTENmolecules

in a eukaryotic system, we employed bioluminescence reso-

nance energy transfer (BRET). To this end, we used Renilla

luciferase-PTEN (PTENRluc) as energy donor and GFPPTEN as

energy acceptor (Figure 1E); coelenterazine was used as sub-

strate for the luciferase. Coexpression of PTENRluc with

GFPPTEN generated a significant increase in the total BRET sig-

nal compared to empty GFP, with GFP emission only occurring

when in close proximity (<100 Å) to the luminescent PTENRluc

(Figure 1F). We also performed competition assays. Coexpres-

sion of donor and acceptor proteins with increasing doses of

untagged PTEN showed a reduction of net BRET, providing

further evidence of direct PTEN-PTEN interaction (Figure 1G).

Finally, we sought to determine whether PTEN dimerization

occurs in both the nucleus and cytoplasm. Utilizing BRET, we

found no variations in nuclear emission over the total BRET

signal, neither in basal conditions nor upon serum stimulation,

suggesting that PTEN dimer likely exists in both compartments

(Figure 1H). This finding was confirmed in co-IPs performed

upon nuclear versus cytoplasmic fractionation (Figures S1C

and S1D). Thus, we have demonstrated by multiple approaches

that PTEN can exist in a homodimeric complex.

PTEN Dimer Is Catalytically Active
To identify the protein domains responsible for PTEN dimer for-

mation, we generated GST-fusion proteins with PTEN N termi-

nus (GST-PTENDC terminus) and PTEN C terminus domains

(GST-PTENDN terminus) (Figure 2A). Coexpression of GST-

PTEN full length (FL) with His-PTENFL confirmed the interaction

between the two FL proteins (Figure 2B). Notably, His-PTENFL

was pulled down by both GST-PTEN-domains in bacteria (Fig-

ure 2B). We then tested the binding by co-IPs in PC3 cells and

confirmed that in eukaryotic cells PTEN uses multiple interfaces

along the entire protein to achieve a dimeric conformation (Fig-

ures S2A and S2B).

To corroborate these findings, we tested the ability of different

PTEN domains to homodimerize in vivo (Figure 2C). In nonre-

ducing SDS-PAGE, total lysates from PC3 cells transfected

withMycPTENFL, MycPTENDN terminus, or MycPTENDPDZ re-

vealed the appearance of upper bands at twice the size of the

respective monomeric proteins. Strikingly, upon stabilization of

MycPTENDC terminus andMycPTENDCTDwith the protease in-

hibitor MG132, we observed dimeric bands with all PTEN vari-

ants tested (Figure 2D), with the MycPTENDC terminus showing

the highest propensity to self-associate (Figure 2E). Notably, the

MycPTENDC terminus and MycPTENDN terminus exhibited a

potential to oligomerize, as evidenced by additional higher

molecular weight bands (Figure 2D, asterisks).

We also studied binding directionality and found that while in

a closed head-to-tail monomeric conformation PTEN is inac-

tive toward its lipid substrate (Leslie and Foti, 2011), through



Figure 1. PTEN Exists in a Dimeric Complex

(A) Co-IPs from total lysate of PC3 cells. IP of

MycPTEN (top) and IP of GFPPTEN (bottom) with

specific tag antibodies revealed reciprocal PTEN-

PTEN interaction.

(B)Co-IPs fromtotal lysateof293Tcells, transfected

with GFPPTENWT and IP with anti-GFP antibody.

Western blot was probed with a PTEN antibody.

(C) NIH 3T3 cell lysates were IP with anti-rabbit

PTEN antibody; native elution and western blots

show monomer and dimer of the protein using

mouse anti-PTEN antibody.

(D) In bacteria, GST-PTEN specifically pulls down

His-PTEN.

(E) Renilla and GFP emissions are detected at

the indicated wavelengths. Administration of

Coelenterazine induces Renilla excitation that

generates BRET signal when in proximity to the

GFP. Bottom: images of fluorescent signals

generated by the different chimeras.

(F) Detection of PTEN-PTEN interaction by BRET

in PC3 cells transfected with the indicated plas-

mids. Bottom shows expression levels of the

different chimeras. Mean values with associated

SD are shown.

(G) Competition assays performed by BRET.

Bottom: expression levels of the indicated chi-

meras. Quantification of Un-tagged PTEN cloned

in the pcDNA3.1 vector is normalized to b-actin.

Mean values with associated SD are shown.

(H) In PC3, BRET signal is collected in a single cell

fashion and nuclear emission normalized over

average of total emission. Mean values with rela-

tive SD are shown.

See also Figure S1.
head-to-head intermolecular binding, it achieves a more active

enzymatic conformation (Figures S2C–S2F).

We next tested the catalytic activity of antibody-purified

PTEN dimers from PC3 cells. PTENFL displayed different affin-

ities toward PTEN deletion mutant versions (Figure S2B), and

higher levels of dimerization between PTENFL and PTEN

domains correlated with higher levels of free phosphate release

(Figure S2E).

We likewise performed gel filtration of various PTEN species

followed by phosphatase assays using PIP3 as substrate. Total

lysates of HEK293 cells with exogenous MycPTEN expression

were fractioned and a low molecular weight range (30–

160 kDa) identified by western blot analysis (Figures 2F, top,

and S2G). Importantly, eluted fractions corresponding to dimeric

PTEN (fractions 26–27) generated higher phosphate release than

fractions of a lower molecular weight which contained mono-

meric PTEN (fractions 28–29) (Figure 2G). Thus, we conclude
Cell 157, 595–6
that PTEN dimerization defines a more

active complex with respect to the less

active PTEN monomer.

Phosphorylation of the PTEN Tail
Regulates PTEN Dimerization
Next, we studied the conformational sta-

tus of PTEN by gel filtration analyses.
FLAG-tagged PTEN without the C-terminal tail (FlagPTENDCTD)

was expressed in HEK293 cells and total lysates were frac-

tioned. Western blot analysis revealed a striking upward shift

of tail-less PTEN compared to PTENFL, indicating an enriched

dimeric status (Figure 2F).

Because the physiologic role of the PTEN tail is mediated by its

phosphorylation status (Vazquez et al., 2000), we performed gel

filtration analyses by using phosphomimetic and phosphodead

mutant-tail versions of PTEN. We focused specifically on amino

acids S380, T382, T383, and S385. By expressing nonphosphor-

ylatable PTEN (PTEN S380A, T382A, T383A, S385A: PTEN4A)

we functionally mimicked deletion of the PTEN C-terminal tail.

Notably, the PTEN4A presented the same upward shift we found

with expression of PTENDCTD (Figure 2F). In contrast, expres-

sion of a phosphomimetic PTEN (PTEN4E) prevented this shift,

indicating a possible role for PTEN tail-phosphorylation in

governing its dimeric status (Figure 2F).
10, April 24, 2014 ª2014 Elsevier Inc. 597



Figure 2. Dimerization Defines a Pool of Catalytically Active PTEN

(A) Diagram of recombinant proteins showing PTEN FL and deletion mutants. In red, N terminus domain, amino acid (aa) 1–185; in orange, C terminus domain,

aa 186–403.

(B) GST-PTENFL and domains were purified (Ponceau-S staining); His-PTEN pulled down is detected by western blot.

(C) Schematic representing series of Myc-tagged PTENFL and deletion mutant vectors. Predicted molecular weights are indicated.

(D) PC3 cells were transfected with the indicated expression vectors. Total lysates were resolved by nonreducing SDS-PAGE and probed with an anti-Myc

antibody. Circles and squares indicate monomeric and dimeric PTEN conformations, respectively. Asterisks indicate oligomers of PTEN domains.

(E) Ratio between PTEN dimer/monomer in PTEN FL and deletion mutant series. Average of three independent experiments is shown with associated SD.

(F) Lysates from HEK293 cells transfected with the indicated PTEN vectors were separated by gel filtration. Fractions were resolved by SDS-PAGE and probed

with specific tag antibodies.

(legend continued on next page)
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Next, we assessed the phosphorylation level of PTEN dimer.

To this end, we immunopurified PTEN and eluted the complex

in nonreducing conditions. After tandem-column gel filtrations

we analyzed the immunocomplex by reducing and nonreducing

SDS-PAGE (Figure 2H). In reducing SDS-PAGE, immunopurified

PTENFL appeared in two peaks corresponding to a ‘‘low-’’ and a

‘‘high-molecular-weight complex’’ (Figure S2H). We then tested

the phospho/nonphospho status of the dimeric PTEN in nonre-

ducing SDS-PAGE. First, with a total PTEN antibody we con-

firmed the presence of PTEN as amonomer and dimer (Figure 2I,

right). Importantly, we found that while a specific ‘‘phospho-

PTEN’’ antibody only recognizes the monomeric form, the rela-

tive ‘‘nonphospho’’ PTEN showed the appearance of both

monomeric and dimeric protein (Figure 2I, left and middle).

Finally, we tested total lysates from HEK293 cells expressing

PTEN4A and PTEN4E. Here, we found that while PTEN4E only

runs as a single monomeric band (Figure 2J, bottom), PTEN4A

showedmonomeric and dimeric PTEN conformations (Figure 2J,

top), in agreement with the shift found by gel filtration. Thus we

demonstrate that phosphorylation of the C-terminal tail main-

tains PTEN as a monomer, whereas the absence of phosphory-

lation is associated with a dimeric conformation.

PTEN Cancer-Associated Mutations Exert Dominant-
Negative Effects over Wild-Type Protein
We then asked if mutant PTEN protein could form dimers and

whether mutations altered dimer formation or activity. The

most studied cancer-associated PTEN mutations are the Cys-

124 to Ser (C124S) and the Gly-129 to Glu (G129E). C124S

mutation generates a catalytically dead PTEN variant that is

associated with endometrial cancer and is reported to com-

pletely ablate PTEN phosphatase activity (Bonneau and Longy,

2000; Myers et al., 1997), whereas the G129E mutation is asso-

ciated with CD and abrogates the phosphoinositide phospha-

tase function but retains activity toward phosphopeptides

(Liaw et al., 1997; Myers et al., 1998). Both mutations lie in the

PTEN catalytic core.

To test our hypothesis, we first analyzed the ability of

MycPTENC124S and MycPTENG129E to homodimerize. In

nonreducing conditions, we found that both mutants appear as

monomers and dimers, like the wild-type protein (Figure 3A).

PTEN mutants were also able to form heterodimers with wild-

type PTEN as found in our co-IP experiments (Figure 3B).

BRET experiments further demonstrated that PTENWT-Rluc in-

teracted with either GFPPTEN-C124S or G129E (Figure 3C).

In bacteria, GST pull-down experiments confirmed that His-

PTENWT binds both GST-tagged PTEN mutants (Figure 3D).

Importantly, purified heterodimers were tested for phosphatase

activity on PIP3. In control experiments, GST-PTENWT alone or
(G) Fractions containing different conformations of PTEN and collected as in (F) we

values from triplicate wells with associated SD are shown.

(H) Experimental flow chart: cell lysates were subjected to IP with an anti-Myc an

tandem-column gel filtration. See also Figure S2H. Collected fractions were reso

(I) Fractions collected as in (H) were resolved by nonreducing SDS-PAGE and pr

(J) Nonreducing SDS-PAGE of eluted fractions generated as in (F) were blotted w

FlagPTEN4E probably due to posttranslational modifications.

See also Figure S2.
a His-PTENWT:GST-PTENWT mix produced effective free

phosphate release. However, heterodimers comprised of His-

PTENWT:GSTPTENC124S or His-PTENWT:GSTPTENG129E

had reduced capacity to hydrolyze PIP3 compared to GST-

PTENWT (Figure 3E), leading us to consider the possibility that

in a heterodimeric state, the catalytically inactive mutations in-

hibited activity of the wild-type PTEN protein toward PIP3, as

we next demonstrated in vivo.

Generation and Characterization of Pten Knockin
Mutant Mice
To investigate the physiological consequences of PTEN-PTEN

mutant heterodimers, we generated mouse models expressing

PTENC124S and PTENG129E (Figures S3A and S3B). For the

PtenC124S/+ and PtenG129E/+ mouse models, we substituted T

to A at position 370 or G to A in position 386 of Pten exon5,

respectively (Figure 3F).

In performing the in vivo characterization of these new Pten KI

mice, we also aimed to investigate two critical aspects of PTEN

regulation: stability and localization. First, since many PTEN

missense point mutations render PTEN unstable (Georgescu

et al., 1999), we measured the mutant Pten proteins levels in

our Pten KI mice. We observed that PtenC124S/+ and PtenG129E/+

express a total level of Pten that is comparable to levels in Pten

wild-type mice (Figure 3G). Second, to exclude the contribution

of defective cellular distribution to our analysis, we performed

cell-fractionation and immunofluorescence (IF) analyses. Here,

we found that PtenC124S/+ and PtenG129E/+ MEFs (Figures 3H–

3J) displayed comparable Pten localization patterns to wild-

type cells.

In Vivo Confirmation of the Dominant-Negative
Functions of Mutant Pten
Because homozygous Pten loss is lethal in embryogenesis, we

investigated the possibility of generating homozygous Pten KI

mice. Three independent crosses per mutation failed to yield

live pups with a homozygous mutant genotype, indicating that

the lipid phosphatase activity of Pten is an essential function dur-

ing embryogenesis (Figures S4A and S4B).

To evaluate the consequences of harboring loss-of-function

Pten mutants in heterozygosity, we established cohorts of

PtenC124S/+, PtenG129E/+, and Pten+/� mice as controls. Because

Pten heterozygosity initiates neoplastic transformation of epithe-

lial tissues and leads to severe lymphoproliferation (Di Cristofano

et al., 1999), we collected a number of organ samples for

histological analysis. We found that young mice between 8

and 16 weeks of age showed hyperplastic changes in the

lymph nodes, with expansion of T cells (data not shown). Surpris-

ingly, unlike Pten+/� mice, a significant number of PtenC124S/+,
re tested for their activity toward PIP3 and normalized over protein levels. Mean

tibody. Immunocomplexes were eluted in native conditions and separated by

lved by reducing (Figure S2H) and nonreducing SDS-PAGE (I).

obed with the indicated PTEN antibodies.

ith anti-Myc (top) and anti-Flag (bottom) antibodies. Asterisk indicates a shift in
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Figure 3. PTENC124S and PTENG129E Mutations Heterodimerize with PTEN Wild-Type and Inhibit Its Phosphatase Function

(A) Nonreducing SDS-PAGE of lysates from PC3 cells transfected with MycPTENWT or mutant vectors and IP with an anti-Myc antibody.

(B) IPs from PC3 cell lysates transfected with the indicated vectors were performed and western blots probed with an anti-PTEN antibody.

(C) BRET analysis on PC3 cells complemented with the indicated vectors. Mean values with associated SD are shown.

(D) GST-pull down (in Ponceau-S staining) reveals binding between prokaryotic PTENWT and mutant versions. Western blots are probed with anti-His antibody.

(legend continued on next page)
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PtenG129E/+ mice developed lymphoproliferation features by

16 weeks (Figure S3E). Accordingly, older Pten KI mice had

increased spleen weights, compared to Pten+/� mice, owing to

severe extramedullary hematopoiesis and lymphoid hyperplasia;

we also found extended expansion of white blood cells in the

peripheral blood (Figure S3F). In solid tissues, the tumor spec-

trum of Pten KI mice was indistinguishable from Pten+/� mice,

with lesions developing in several glands and organs (Figures

S3C and S3D). However, histological assessments at different

time points revealed that a greater proportion of Pten KI mice

developed adenomas of the thyroid, adrenal, and gallbladder,

with 2 out of 29 PtenC124S/+, and 3 out of 37 PtenG129E/+ male

mice also developing invasive adenocarcinoma of the thyroid.

In addition, three PtenC124S/+ mice developed lung adenomas,

and 4 out of 30 PtenG129E/+ female mice developed liver ade-

nomas, a lesion never observed in our Pten+/� mice (Figures

S3C and S3D). In mammary tissues, 68.9% of our Pten+/�

mice between 9 and 12 months developed hyperplastic lesions

(13 out of 29, 44.8%) or small adenocarcinomas (7 out of 29,

24.1%). Lesions developed in 66% and 67% of PtenC124S/+and

PtenG129E/+ mice, respectively; however, along with a number

of hyperplasia cases and small adenocarcinomas (9 out of 27,

33.3%, for PtenC124S/+, and 7 out of 24, 29.1%, for PtenG129E/+)

we also found that 33.3% of PtenC124S/+ mice (9 out of 27) and

37.5% of PtenG129E/+ mice (9 out of 24) developed large invasive

adenocarcinomas (Figures 4A and 4B). Thoracic and inguinal fat

pads presented massive expansion of epithelial cells and con-

nective tissue, with central necrotic areas likely due to tumor

size, which reached 0.6 cm2 on average (Figures 4C and S4C).

As PTEN loss also leads to defects in neuronal development,

we assessed the status of different neuronal populations (Fraser

et al., 2004). Histopathological analysis revealed that only the

pituitary gland presented signs of tumorigenesis, with adenomas

developing primarily in the anterior lobe (Figure S4E) (Bai et al.,

2006). However, in the cerebellum, we found that while Pten+/�

mice had histologically normal brains, both Pten KI cohorts

developed features of Lhermitte-Duclos disease, or ‘‘dysplastic

gangliocytoma’’ (Figures 4D, 4E, S4D, and S4G) (Backman

et al., 2001; Kwon et al., 2001). An average of 25% of

PtenC124S/+ and PtenG129E/+ mice had enlarged areas in the cer-

ebellum, with disorganized spreading of granule cells into the

molecular layer, increased thickness of the molecular layer itself,

and the presence of neurons expressing the neuronal marker,

NeuN (Figure 4F). Immunostaining confirmed the expansion of

glial cells (mostly astrocytes, GFAP positive, Figure 4F), together
(E) Fractions of PTEN dimers purified as in (D), plus GST-PTENWT alone were pur

PIP3 as substrate. PO4 released is normalized over levels of His-PTEN pulled do

values of triplicate wells with associated SD are shown.

(F) Sequencing of Pten-exon5 amplified fromDNA of targeted ES cells. Electrophe

T-to-A; bottom: G129E, G-to-A).

(G) Analysis of Pten protein levels. Total lysates of MEFs and adult tissues (lung an

resolved by SDS-PAGE. Pten quantification is normalized to b-actin and relative

(H) Nuclear versus cytoplasmic fractionation of MEFs. Comparable distribution o

(I) Pten IF in MEFs: 120 cells per field (2003 magnification) were scored on avera

membrane and in the cytosol) is shown with associated SD.

(J) Representative IF showing endogenous nuclear (white arrowheads) and

represent 50 mm.

See also Figure S3.
with an increased number and size of glial fibers, as shown by

positivity to the proliferation marker PCNA (Figure S4F). Affected

areas reshaped the structure of the cerebellar lobes and led to

dispersion of the Purkinje cells in the molecular layer (Calbindin

staining in Figure 4F). These ‘‘PHTS’’ features were found as

early as 4 months of age and presented in small localized areas,

as well as in more developed lesions that pervaded the whole

cerebellum (Figure 4E). Notably, conditional loss of Pten in the

brain, under Gfap-driven Cre expression, leads to similar find-

ings (Backman et al., 2001; Kwon et al., 2001). Taken together,

our in vivo data reveal that Pten KI mice have an exacerbated

tumor spectrum and PHTS features compared to Pten+/� mice.

Pten KI Mice Show Higher Sensitivity to Growth Factor
Stimulation and Increased Akt Activation
To investigate the molecular basis of the augmented tumorigen-

esis observed in Pten KIs versus Pten+/� mice, we monitored

downstream effectors of Pten. For this, we isolated primary

mammary epithelial cells (MECs) from young Pten+/+, Pten+/�,
PtenC124S/+, and PtenG129E/+ female mice to examine levels of

Akt phosphorylation. Importantly, while Pten+/� derived MECs

had increased phospho-Akt levels compared to wild-type cells,

lysates from PtenC124S/+ and PtenG129E/+ derived MECs dis-

played levels of Akt activation consistently higher than those

found in Pten+/� (Figures 5A and 5B). We next examined Akt

phosphorylation in preonset mammary glands of 10- to 12-

week-old mice by immunohistochemical staining (IHC) and

found that Pten KI mice presented the strongest signal (Fig-

ure 5C), which persisted in tumor lesions of older mice (Figures

S3G and S4C).

To further test the propensity of Pten mutations to induce Akt

hyperactivation, we generated mouse embryonic fibroblasts

(MEFs). Insulin-like growth factor (IGF) stimulation led to acute

Akt phosphorylation in Pten-KI-derived MEFs, again much

higher than in Pten+/� cells (Figure 5D). Similar results were

observed upon insulin stimulation (Figure S5A). In addition, by

monitoring the activation profile over time, we found that after

1 hr of insulin stimulation, Pten KI MEFs sustained higher levels

of phospho-Akt (Figure 5E).

We next examined cellular levels of PIP3, which is mainly

found on the leading edges of filopodia and lamellipodia, to stim-

ulate cell migration and invasion (Kölsch et al., 2008). In MEFs, IF

experiments showed that 1 min of insulin stimulation led to PIP3

accumulation at themembrane of all samples, with PtenKIMEFs

showing the strongest signal (Figure 5F).
ified. Catalytic activity of PTEN dimers was tested in phosphatase assays using

wn and is shown relative to the PO4 released by GST-PTENWT alone. Mean

rograms show expression of both Ptenwt and Ptenmutated alleles (top:C124S,

d spleen) derived from Pten+/+, Pten+/�, PtenC124S/+, and PtenG129E/+micewere

to WT band.

f Pten was observed across the different genotypes.

ge. Percentage of Pten accumulation in the nucleus versus cytoplasm (at the

cytoplasmic (red arrowheads) distribution of Pten in MEFs. Scale bars
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Figure 4. Dominant-Negative Effect of PTEN Cancer-Associated Mutations Leads to Enhanced Tumorigenesis and Development of

Hamartoma Features

(A) Pie charts showing breast tumor distribution in Pten+/�, PtenC124S/+, and PtenG129E/+ female mice between 9 and 12 months of age.

(B) H&E staining of tumoral lesions found in breast tissues of Ptenmouse lines. Top: arrows point to hyperplasia (left) and small adenocarcinomas (right) found in

the 68.9% of Pten+/� mice (n = 20 out of 29); LN, lymph nodes. See also Figures S3E and S3F. Bottom: sections of large breast adenocarcinomas developing in

34% of PtenC124S/+mice (n = 9 out of 27), left, and 37.5% of PtenG129E/+mice (n = 9 out of 24), right. Asterisks indicate areas of epithelial expansion surrounded by

connective tissue. Arrows point to areas of necrotic tissue found in the middle core of the tumors. Scale bar represents 1 mm in hyperplasia sample, top left; and

500 mm in the remaining panels.

(C) Tumor area of large breast adenocarcinomas found in Pten KI mice. Inset: picture of large breast tumor (red arrowhead) developing in the inguinal fat-pad of a

9-month-old PtenC124S/+ female mouse. Histogram shows average tumor area measured on paraffin blocks samples (side 3 side). Br, breast; LN, lymph node.

Mean values with associated SD are shown.

(D) Lhermitte-Duclos disease develops in the cerebellum of Pten KI mice. Table shows penetrance of disease in PtenC124S/+ (six females and one male) and

PtenG129E/+ mice (three females and seven males). See also Figures S4D and S4G.

(legend continued on next page)
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Next, wemonitored activation levels of Akt isoforms. Out of the

three, Akt1 and Akt2 are more widely expressed, and their con-

tributions to tumorigenesis have been better characterized (Gon-

zalez and McGraw, 2009). Thus, we performed IP-western blot

analysis on Akt1 and Akt2 and found that both proteins were hy-

perphosphorylated in Pten KI MEFs (Figures S5C and S5D). We

also examined expression levels of key components of the PI3K

pathway and found no changes in total levels of its upstream or

downstream components (Figure 5G); nor did we find alteration

in the formation of the PI3K complex (p85:p110 binding) across

the Pten genotypes (Figure S5B).

We then monitored the activation of several Akt targets, in-

cluding the mTORC1 complex. We found that upon insulin stim-

ulation, Pten KI MEFs displayed increased levels of PRAS40

phosphorylation compared to Pten+/� cells, resulting inmTORC1

activation and faster accumulation of phospho-S6, its down-

stream substrate (Figures 5H, S5F, and S5G). Pten KI MEFs

also displayed reduced levels of IRS1, probably due to negative

feedback loops driven by mTORC1activation (Figure 5G) (Shah

et al., 2004).Wealsomonitored activation of Akt targets including

TSC2, Foxo1, and Foxo3a, but while both Foxo proteins were

more phosphorylated in Pten KI MEFs compared to Pten+/�,
the status of phospho TSC2 remained unchanged (Figure 5H).

Finally, we tested the status of proposed Pten protein sub-

strates and established their potential contribution to Pten loss

driven tumorigenesis. (Tamura et al., 1999; Zhang et al., 2011).

In our experimental conditions, however, while IGF stimulation

led to Akt hyperactivation, the phosphorylation status of Fak

and Src were not significantly affected across the Pten geno-

types (Figure S5E).

Dimerization and Membrane Recruitment Identify an
Active Pool of PTEN In Vivo that Is Out-Competed by
Mutant PTEN
We then immunopurified Pten fromPten+/+, Pten+/�,PtenC124S/+,
and PtenG129E/+ MEFs and tested the respective phosphatase

activity toward PIP3. We found that free phosphate production

by the heterodimeric complexes was lower than that found

under Pten heterozygous conditions. Accordingly, reduced

PIP3 hydrolysis led to increased Akt phosphorylation (Figures

6A and 6B).

Because PIP3 is produced in the inner leaflet of the plasma

membrane, we next analyzed Pten membrane recruitment. To

this end, we coexpressed GFPPTEN WT or mutants alongside

untagged PTENWT in PC3 cells and monitored the ability of

the different GFPPTEN species to localize to the plasma-mem-

brane (PM) (Figure S6A). We found that, upon starvation and

serum stimulation, GFPPTEN mutant proteins showed a 12%

greater concentration (on average) at the membrane than

GFPPTEN WT (Figure S6B).
(E) H&E staining of cerebellar sections from Pten mouse lines. Top: histologically

(ML), internal granule cell layer (IGL), and deep cerebellar nuclei (DCN). Bottom: L

(left) or developing through the entire cerebellum (right). See also Figure S4D. Sc

(F) Immunohistochemistry (IHC) of cerebellar sections from 10-month-old Pten

spreading into the ML. Calbindin immunostaining shows dispersion of Purkinje c

staining identifies presence of scattered neurons. Scale bars represent 25 mm.

See also Figure S4.
To verify that PTEN is present at the membrane as homo-

or heterodimers, we repeated this assay by coexpressing

GFPPTEN variants with mCherry-tagged PTENWT. Coexpres-

sion of mCherryPTENWT with GFPPTENWT displayed a linear

accumulation of GFP and mCherry signals at the PM, with

<2% intrinsic variation, likely due to different backbone plas-

mids. However, in coexpressing C124S or G129E-GFP variants

with mCherry-PTENWT, we observed that the GFP detection at

the PM was only 4% more intense than the mCherry signal (Fig-

ures 6C and S6C), suggesting that, although both mutants are

recruited to the membrane more rapidly than PTEN WT, they

are also able to promote enhanced mCherry-PTENWT mem-

brane recruitment through dimerization.

In addition, co-IPs from PC3 cell-membrane fractions con-

firmed that MycPTENWT can bind GFPPTENWT and GFPPTEN

mutants at the membrane (Figure 6D). Thus we propose that

‘‘inactive’’ hetero- and homodimers may displace and out-

compete the function of ‘‘active’’ PTEN WT homodimers.

Consequence of PTEN Mutations on Loss of
Heterozygosity and Akt Activation in Mouse Models and
Humans
In the mouse, monoallelic loss of Pten leads to tumor initiation

while cancer progression often selects for loss of the functional

Pten allele (Hollander et al., 2011). Thus, we asked whether in

Pten KI mice, the dominant-negative action of mutant over

wild-type Pten protein would trigger advanced tumorigenesis

also in the absence of loss of heterozygosity (LOH). We there-

fore performed Southern blot (SB) analysis and laser capture

microdissection (LCM) on large breast adenocarcinoma sam-

ples from Pten KI mice. By SB we found that on average,

50% of the Pten KI breast samples fully retained the Pten wt

allele (Figure S6D). To test a larger number of samples, we

then performed LCM and PCR amplification on DNA extracts

and found mixed genomic profiles with only one out of six

PtenC124S/+ samples (16%) displaying total LOH and two out

of six PtenG129E/+ samples (33%) presenting either partial or

total LOH (Figure 6E).

Next, we examined the status of the Pten protein by IHC and

found predominantly positive staining, with areas of reduced in-

tensity in agreement with the percentage of LOH found by SB

and LCM (Figure 6F). This finding argues that the dominant-

negative effect of Pten mutations exerts their negative protu-

morigenic effects even in the absence of LOH; however, when

cancer arises, intratumoral variability and accumulation of addi-

tional mutations will eventually favor focal loss of Pten. Thus the

persistent Akt hyperactivation, as found in large adenocarci-

nomas (Figure S6E), leads to accelerated cancer formation,

while PTEN LOH, when observed, may further favor tumor

progression.
normal cerebellum from Pten+/+ and Pten+/� mice displaying molecular layer

hermitte-Duclos disease in Pten KI mice present in small areas of early lesions

ale bar represents 1 mm.

mouse lines. From the top: H&E staining shows disorganized granule cells

ells due to granule cells overgrowth (GFAP immunostaining). NeuN immuno-
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Figure 5. PtenC124S/+- and PtenG129E/+-Associated Tumorigenesis Is Driven by Akt Hyperactivation

(A) Total lysates of mammary epithelial cells (MECs) derived from 10- to 12-week-old female mouse lines. MECs were starved overnight and stimulated for 10min

with full serum (see Experimental Procedures).

(B) Phospho-Akt levels are normalized over total protein levels. Average of three independent experiments is shown.

(C) IHC of Phospho-Akt (S473) in breast tissue of 12-week-old female mice (top) and 9-month-old female mice (bottom). Scale bars represent 50 mm.

(D) Activation of PI3K pathway in MEFs. Total lysates were resolved by SDS-PAGE and probed with the indicated antibodies. Phospho-Akt levels are normalized

over total Akt.

(E) MEFs were starved for 3 hr and stimulated with 0.5 mg/ml of insulin for the indicated time points. Phospho-Akt levels are normalized over total Akt.

(F) PIP3 immunostaining inMEFs.MEFswere starved for 3 hr, stimulated with 0.5 mg/ml of insulin for 1min, and fixedwith 4%PFA (see Experimental Procedures).

Arrows point to accumulation of PIP3 at the leading edges of membrane projections. Scale bars represent 50 mM.

(G) Total lysates of MEFs were resolved by SDS-PAGE and probed to detect protein levels of members of the PI3K/Akt pathway.

(H) Activation of Akt targets in Pten-derived MEFs. MEFs were starved for 3 hr and stimulated for the indicated time points. Total lysates were resolved by SDS-

PAGE and probed with the indicated antibodies.

See also Figure S5.
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Figure 6. Akt Hyperactivation Leads to Faster Tumor Formation

(A) Analysis of Pten catalytic activity. Total lysates of MEFs were IP with an anti-Pten antibody, immunocomplexes eluted in native conditions, and relative

phosphatase activity normalized over levels of Pten IP. Mean values from triplicate wells with associated SD are shown.

(B) Levels of Akt phosphorylation found in MEFs treated as in (A).

(C) PC3 cells were transfected with mCherry-PTENWT alongside GFP-PTENWT or mutants. Translocation to PM was assayed through generation of ratiometric

images. Average ratios were calculated based on fluorescent intensities of mCherry and GFP species at the PM versus intensities found in the cytosol during

serum reactivation. Quantification of PTEN distribution is shown.

(D) Co-IPs from membrane or cytosolic fractions of PC3 cells transfected with the indicated PTEN vectors. PanCadherin and LDH are membrane and cytosolic

protein markers, respectively

(E) Laser capture microdissection (LCM) analysis performed on large breast adenocarcinoma samples of Pten KI mice. Top: representative PCRs of Pten exon5

locus showing levels of wild-type and targeted Pten alleles found in microdissected breast samples. Bottom: percentage of LOH in breast tumor samples, n = 6

per genotype.

(F) IHC of large breast adenocarcinomas from 10-month-old Pten KI female mice. Pten expression ismaintained in the majority of the breast tumor with exception

of localized areas with reduced intensity (surrounded in white). LOH, area with loss of heterozygosity.

(G) Association study between PTEN status and AKT phosphorylation in human cancer (see Experimental Procedures). Samples harboring PTEN mutation are

associated with higher levels of phospho-AKT(T308) (top) and phospho-AKT(S473) (bottom) compared to samples with PTEN heterozygosity.

(legend continued on next page)
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To assess whether our observations were consistent with the

molecular changes occurring in human tumorigenesis, we

examined the association between PTEN mutational status

and AKT activation in human cancers. For this, we analyzed

data sets from The Cancer Genome Atlas available at the cBio

portal (http://www.cbioportal.org) and matched the genetic

status of PTEN with the reverse-phase protein arrays (RPPA)

data for AKT. We found that samples with heterozygous muta-

tions in PTEN (and no copy number alteration, including two

PTENG129E mutant cases) were associated with higher levels

of AKT phosphorylation (on both Thr308 and Ser473) compared

to samples with heterozygous PTEN loss (and no additional mu-

tations) (Figure 6G), independent of total Akt levels (Figure S6F).

These data support the notion that PTENmutations have greater

consequence than heterozygous PTEN loss in promoting PI-3K/

AKT hyperactivation andmay predict for higher sensitivity to AKT

inhibition in human cancers.

Genetic Assessment of the Dominant-Negative Role of
Mutant Pten
Finally, we reasoned that, if our model was correct, then the

observed differential signaling output between Pten KI cells

versus Pten+/� should be absent in PtenKI/� versus Pten�/� cells.

Unfortunately, this could not be addressed in MEFs because

complete Pten loss is known to trigger cellular senescence in

these cells (Chen et al., 2005); indeed, we found that

PtenC124S/+MEFs presented increased senescence overPten+/�

MEFs upon passaging (Figures S6G–S6I). To overcome this

problem, we made use of a conditional knockout strategy

induced by the CD4-Cre recombinase, which is active in the

double-positive lymphocyte stage of thymus development (Fig-

ure 6H). Extracted thymocytes were cultured and their PI3K-

signaling output analyzed by western blot and flow cytometry

analysis, respectively. Critically, in this setting we found no

consistent differences in signaling output across the genotypes

(Figures 6I and 6J), further supporting a model in which Pten

mutations enhance PI3K/Akt oncogenic signaling by inhibiting

its WT counterpart.

Functional Evaluation of PTENR130G Mutation
Because PTENC124S and PTENG129E mutations are only

found in a subset of cancer and genetic syndromes, we next

tested the functional role of three additional PTEN mutations

more commonly found in human disease: PTENR130G,

PTENR130X, and PTENR233X (Bonneau and Longy, 2000).

PTENR130X and R233X nonsense mutations introduce stop

codons that generate very unstable PTEN proteins that are

almost undetectable (Figure S7A) and thus are functionally com-

parable to the PTEN heterozygous condition. The PTENR130G

missense mutation, however, generates a stable protein that
(H) Ptenfl/fl and PtenC124S/fl mice were crossed with CD4-driven Cre transgenic

thymocyte development. DN, double-negative thymocytes; SP, single-positive (r

(I) Thymocytes from 3- to 4-week-old mice with the indicated genotypes were ext

and probed with the indicated antibodies.

(J) Representative flow histogram of thymocyte populations stimulated with Ant

show comparable levels of phospho-Akt.

See also Figure S6.
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suffers loss of its lipid phosphatase function (Kato et al.,

2000). In this respect, PTENR130G phenocopies PTENC124S

and PTENG129E, so we further investigated its potential domi-

nant-negative effect.

First, we confirmed that this mutation has no suppressive

effect on phospho-AKT levels in PTEN null cells (Figure 7A).

We next determined that PTENR130G can interact with WT

PTEN in bacteria as well as eukaryotic cells (Figures 7B and

7C). Then, by testing the phosphatase function of HisPTENWT-

GSTPTENR130G heterodimer purified from bacteria, we found

that when bound together, PTENR130G limits the function of

the WT protein to inhibit PIP3 dephosphorylation (Figure 7D). In

addition, overexpression of PTENmutations in PTEN-competent

293T cells displayed increased phospho-AKT on T308 than cells

expressing empty vector, overcoming the function of endoge-

nous PTEN (Figure 7E).

Finally, we found that samples harboring mutations on

PTENR130 either mutated to Gly (R130G) or to Gln (R130Q) in

a total of 19 samples from glioblastoma and endometrial cancers

exhibited higher levels of AKT phosphorylation than samples

with monoallelic loss of PTEN (Figure 7F).

DISCUSSION

In this study, we have demonstrated that PTEN dimerization is

critical for its lipid phosphatase function. We have also proposed

that dimeric PTEN complexes are more active than PTENmono-

mer in dephosphorylating PIP3 and regulating PI3K signaling. By

studying two PTEN cancer-associated mutations, we revealed

that while disrupting PTEN activity in cis, PTENC124S and

PTENG129E inhibit the WT protein function in trans in a domi-

nant-negative manner as a result of heterodimerization. In turn,

this reduced Pten lipid-phosphatase activity leads to Akt hyper-

activation and increased tumorigenesis in the mouse.

These findings allow us to reach several conclusions. Mecha-

nistically, we have defined that PTEN exists as a dimer. Given

that PTEN is part of the VH1-like family of DSPs, it is relevant

that the prototypical VH1 phosphatase is known to exist in a

dimeric-quaternary complex whose assembly is essential for

the recognition of its substrate, STAT1 (Koksal and Cingolani,

2011). Moreover, phosphorylation of the PTEN tail is known to

produce an inactive form of the enzyme in a closed conformation

(Leslie and Foti, 2011). In agreement, we provide evidence that

dephosphorylation of the PTEN-tail, while favoring a more

open conformation, also allows subsequent dimerization and,

possibly, oligomerization, in view of the multiple interfaces found

to mediate the PTEN-PTEN interaction.

The role of PTEN dimerization in cancer is particularly impor-

tant when we consider the high frequency of PTEN mutations

in sporadic tumors and inherited syndromes. In this study, we
mice (left). Pten deletion specifically occurs at the double-positive (DP) stage of

ight).

racted and stimulated as indicated. Total lysates were resolved by SDS-PAGE

i-CD3/Anti-CD28 for the indicated time. Pten�/� and PtenC124S/� thymocytes

http://www.cbioportal.org


Figure 7. PTENR130G Parallels PTENC124S and PTENG129E Mutations

(A) Total lysates of PC3 cells transfected with PTEN WT and mutant expression vectors. Western blots were probed with the indicated antibodies.

(B) Bacteria were cotransformed with His-PTENWT vector alongside empty GST, GST-PTENWT, or GST-PTENmutant vectors as indicated. Protein lysates were

subjected to GST pull down and SDS-PAGE blots probed with His-tag antibody.

(C) Co-IPs from total lysates of PC3 cells transfected with the indicated vectors and IP with a Myc-tag antibody. Western blot revealed interaction between

PTENWT and PTENR130G mutant protein.

(D) Phosphatase assay of PTEN dimers purified from bacteria. PO4 released is normalized over levels of His-PTEN pulled down and shown relative to the PO4

released by GST-PTENWT alone. Mean value of triplicate wells with associated SD are shown.

(E) HEK293T transfected with the indicated MycPTEN vectors were starved overnight and stimulated with 10% serum for 10 min. Total lysates were resolved by

western blot and probed with the indicated antibodies. Phospho-AKT levels are normalized over total AKT.

(F) Association study between AKT activation and PTEN mutations at aa R130 in human cancers.

(G) Top: Pten heterozygosity leads to Akt activation and tumorigenesis. Heterozygous expression of cancer-associated PTEN mutations leads to formation of

catalytically inactive heterodimers. Consequentially, increased PIP3 levels induce Akt hyperactivation and augmented tumorigenesis (bottom).

See also Figure S7.
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have analyzed in vivo and in vitro two cancer- and CD-associ-

ated missense mutations and extended our analysis to a third

mutation, PTENR130G. In the future, it will be important to study

various PTENmutations in a systematic manner. It is tempting to

speculate that other PTENmutants may affect the function of the

PTEN WT protein through physical interactions and perhaps at

multiple levels, e.g., by affecting PTEN extracellular export (Hop-

kins et al., 2013; Putz et al., 2012).

Clinically, our study implies that patients harboring these, or

similar loss-of-function missense mutations, may be more sus-

ceptible to malignant cancer and may develop it more rapidly

than patients expressing reduced levels of PTEN or expressing

PTEN-destabilizing mutations. Thus we propose that PTEN

mutational status may be utilized to stratify patients who may

benefit from earlier and more radical therapeutic intervention

modalities, potentially leading to improved prognoses.

Although we cannot exclude the possibility that certain PTEN

mutations may become competent toward targets not recog-

nized by the wild-type protein in a ‘‘gain-of-function’’ scenario

(Wang et al., 2010), our genetic analyses support a model in

which the ability of mutant PTEN to interfere with WT protein

function contributes to exacerbation of tumor spectrum

compared to Pten heterozygosity (Figure 7G). While these muta-

tions induce acceleration of tumorigenesis, they specifically act

by further lowering Pten activity rather than engaging alternative

pathways. Accordingly, we found that Pten KI mice developed

Lhermitte-Duclos disease, as previously reported in mice with

total conditional Pten loss, while lesions of different histological

origins not associated with Pten loss (such as sarcomas) were

not observed.

Additionally, in monitoring the activation status of proposed

PTEN phosphoprotein targets we found no obvious changes

upon IGF stimulation, or variation between tumor spectra of

the two Pten KI models. This implies that even if cancer-relevant

PTEN phosphoprotein targets are present and deregulated in

PtenC124S/+ mice, concomitant Akt hyperactivation may over-

come their effects, perhaps due to increased cellular senes-

cence (Figure S6G). While several reports have highlighted the

possibility that PTEN protein phosphatase activity may be

related to regulation of migration and invasion (Tibarewal et al.,

2012), in our in vivo analysis of the Pten KI mice we did not

observe metastasis. However, the general exacerbation of solid

tumorigenesis in multiple organs and pronounced lymphoprolif-

eration may have masked a possible metastatic phenotype in

elder mutants.

In summary, we have identified features of PTEN biology

through the characterization of cancer-associated PTEN

missense mutations. Given the ongoing development of agents

targeting the PI3K pathway including AKT-inhibitors, our findings

may help to identify patients that may be sensitive to these

agents due to high levels of AKT activation associated with a

PTEN mutant state.
EXPERIMENTAL PROCEDURES

Western Blotting, Immunoprecipitation, and In Vitro Binding

For details on western blotting, immunoprecipitation, and in vitro binding

please refer to Extended Experimental Procedures.
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Gel Filtration Chromatography

For gel filtration experiments please refer to Extended Experimental

Procedures.

Mice and Immunohistochemistry

Autopsy and histological analysis was performed on cohorts of female and

male mice from 2–13 months of age. Mouse tissues were fixed in 4% PFA.

Normal and tumor tissues were embedded in paraffin, sectioned, and hema-

toxylin and eosin (H&E) stained for pathological evaluation. Brain tissues

were fixed in Bouin’s solution. Please refer to Extended Experimental Proce-

dures for details on the generation of mouse lines. All mice were cared for

according to NIH-approved institutional animal care guidelines and studies

approved by the Institutional Committee at the Beth-Israel DeaconessMedical

Center.

Studies with Primary Cells

Mouse embryonic fibroblasts (MEFs) were isolated at day E13.5 and main-

tained in culture as described (Todaro and Green, 1963). MEFs between

passages 1 and 3were used for all experiments. Senescence assayswere per-

formed as described (Chen et al., 2005).

Isolation of primary mammary epithelial cells (MECs) was performed as pre-

viously described (Song et al., 2013). Please refer to Extended Experimental

Procedures for details.

PtdIns(3,4,5)P3 Phosphatase Assay

PC3 cells and primary MEFs lysates from Pten lines were IP and subjected to

native elution. For phosphatase assays, a solution with 25 mM Tris-HCl

(pH 7.5), 140 mMNaCl, 1 mM DTT, and 100 mMdiC8-PtdIns(3,4,5)P3 (Echelon)

was prepared and assay ran at 37�C for 45 min. Free phosphate release was

measured with Green Reagent (Biomol) and according to the manufacturer’s

instructions.

Population BRET Imaging

PC3 cells seeded on 35 mm wells were transfected with indicated expression

vectors. After 48 hr, cells were scraped and transferred into a white OptiPlate-

96 (Perkin Elmer). Luminescent emission was stimulated by adding 5 mM

Coelenterazine and signal collected with the Victor3 plate reader (Perkin

Elmer). Please refer to Extended Experimental Procedures for details.

Bioinformatic Analysis

We used tissue samples from The Cancer Genome Atlas (TCGA) project to

assess relationships between PTEN mutation status, PTEN copy number sta-

tus, and expression levels of AKT and pAKT in human cancer samples. Please

refer to Extended Experimental Procedures for details.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures and

seven figures and can be found with this article online at http://dx.doi.org/

10.1016/j.cell.2014.03.027.
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